ON A REGULARIZED SOLUTION OF THE CAUCHY PROBLEM FOR MATRIX FACTORIZATIONS OF THE HELMHOLTZ EQUATION
In this paper, we consider the problem of recovering solutions for matrix factorizations of the Helmholtz equation in a multidimensional bounded domain from their values on a part of the boundary of this domain, i.e., the Cauchy problem. An approximate solution to this problem is constructed based o...
Gespeichert in:
Veröffentlicht in: | TWMS journal of applied and engineering mathematics 2023-01, Vol.13 (4), p.1311 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1311 |
container_title | TWMS journal of applied and engineering mathematics |
container_volume | 13 |
creator | Juraev, D.A Noeiaghdam, S Agarwal, P |
description | In this paper, we consider the problem of recovering solutions for matrix factorizations of the Helmholtz equation in a multidimensional bounded domain from their values on a part of the boundary of this domain, i.e., the Cauchy problem. An approximate solution to this problem is constructed based on the Carleman matrix method. Keywords: Ill-Posed Cauchy Problems, regularized solution, approximate solution, matrix factorization, elliptical system. AMS Subject Classification: 35J46, 35J56 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3126886256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A769581562</galeid><sourcerecordid>A769581562</sourcerecordid><originalsourceid>FETCH-LOGICAL-g250t-764fe151c95a3dc371888b55feea6c9c5e3c9b0e7f7b211992d754a85d38a2a03</originalsourceid><addsrcrecordid>eNptjV1PgzAUhonRxGXuPzTxGkML_eCyYhkknVUGie6GdKUsLNvQwf6_9SvuwnMuzpv3PO85F94EwYj4EEb08kxfe7Nh2AauGCE0CCeeUY-Ag0LMK8mLfCUewFLJqsydrVJQZgIkvEqyV_BUqHspFiBVBVjwsshfQMqTUrkQ_8SXv3wm5CJTslwB8Vx9rW68q1bvBjv7mVOvSkWZZL5U8zzh0t8gHIw-JVFrIYYmxjpsTEghY2yNcWutJiY22IYmXgeWtnSNIIxj1FAcaYabkGmkg3Dq3X7ffTv27yc7jPW2Px0P7mUdQkQYIwiTP2qjd7buDm0_HrXZd4OpOSUxZhAT5Ki7fyjXjd13pj_YtnP-WeADSo1lVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126886256</pqid></control><display><type>article</type><title>ON A REGULARIZED SOLUTION OF THE CAUCHY PROBLEM FOR MATRIX FACTORIZATIONS OF THE HELMHOLTZ EQUATION</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Juraev, D.A ; Noeiaghdam, S ; Agarwal, P</creator><creatorcontrib>Juraev, D.A ; Noeiaghdam, S ; Agarwal, P</creatorcontrib><description>In this paper, we consider the problem of recovering solutions for matrix factorizations of the Helmholtz equation in a multidimensional bounded domain from their values on a part of the boundary of this domain, i.e., the Cauchy problem. An approximate solution to this problem is constructed based on the Carleman matrix method. Keywords: Ill-Posed Cauchy Problems, regularized solution, approximate solution, matrix factorization, elliptical system. AMS Subject Classification: 35J46, 35J56</description><identifier>ISSN: 2146-1147</identifier><identifier>EISSN: 2146-1147</identifier><language>eng</language><publisher>Istanbul: Turkic World Mathematical Society</publisher><subject>Applied mathematics ; Boundary value problems ; Cauchy problems ; Differential equations ; Fluid dynamics ; Helmholtz equations ; Matrix methods ; Partial differential equations ; Physics</subject><ispartof>TWMS journal of applied and engineering mathematics, 2023-01, Vol.13 (4), p.1311</ispartof><rights>COPYRIGHT 2023 Turkic World Mathematical Society</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Juraev, D.A</creatorcontrib><creatorcontrib>Noeiaghdam, S</creatorcontrib><creatorcontrib>Agarwal, P</creatorcontrib><title>ON A REGULARIZED SOLUTION OF THE CAUCHY PROBLEM FOR MATRIX FACTORIZATIONS OF THE HELMHOLTZ EQUATION</title><title>TWMS journal of applied and engineering mathematics</title><description>In this paper, we consider the problem of recovering solutions for matrix factorizations of the Helmholtz equation in a multidimensional bounded domain from their values on a part of the boundary of this domain, i.e., the Cauchy problem. An approximate solution to this problem is constructed based on the Carleman matrix method. Keywords: Ill-Posed Cauchy Problems, regularized solution, approximate solution, matrix factorization, elliptical system. AMS Subject Classification: 35J46, 35J56</description><subject>Applied mathematics</subject><subject>Boundary value problems</subject><subject>Cauchy problems</subject><subject>Differential equations</subject><subject>Fluid dynamics</subject><subject>Helmholtz equations</subject><subject>Matrix methods</subject><subject>Partial differential equations</subject><subject>Physics</subject><issn>2146-1147</issn><issn>2146-1147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptjV1PgzAUhonRxGXuPzTxGkML_eCyYhkknVUGie6GdKUsLNvQwf6_9SvuwnMuzpv3PO85F94EwYj4EEb08kxfe7Nh2AauGCE0CCeeUY-Ag0LMK8mLfCUewFLJqsydrVJQZgIkvEqyV_BUqHspFiBVBVjwsshfQMqTUrkQ_8SXv3wm5CJTslwB8Vx9rW68q1bvBjv7mVOvSkWZZL5U8zzh0t8gHIw-JVFrIYYmxjpsTEghY2yNcWutJiY22IYmXgeWtnSNIIxj1FAcaYabkGmkg3Dq3X7ffTv27yc7jPW2Px0P7mUdQkQYIwiTP2qjd7buDm0_HrXZd4OpOSUxZhAT5Ki7fyjXjd13pj_YtnP-WeADSo1lVw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Juraev, D.A</creator><creator>Noeiaghdam, S</creator><creator>Agarwal, P</creator><general>Turkic World Mathematical Society</general><general>Elman Hasanoglu</general><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>EDSIH</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230101</creationdate><title>ON A REGULARIZED SOLUTION OF THE CAUCHY PROBLEM FOR MATRIX FACTORIZATIONS OF THE HELMHOLTZ EQUATION</title><author>Juraev, D.A ; Noeiaghdam, S ; Agarwal, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g250t-764fe151c95a3dc371888b55feea6c9c5e3c9b0e7f7b211992d754a85d38a2a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied mathematics</topic><topic>Boundary value problems</topic><topic>Cauchy problems</topic><topic>Differential equations</topic><topic>Fluid dynamics</topic><topic>Helmholtz equations</topic><topic>Matrix methods</topic><topic>Partial differential equations</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juraev, D.A</creatorcontrib><creatorcontrib>Noeiaghdam, S</creatorcontrib><creatorcontrib>Agarwal, P</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Turkey Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>TWMS journal of applied and engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juraev, D.A</au><au>Noeiaghdam, S</au><au>Agarwal, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON A REGULARIZED SOLUTION OF THE CAUCHY PROBLEM FOR MATRIX FACTORIZATIONS OF THE HELMHOLTZ EQUATION</atitle><jtitle>TWMS journal of applied and engineering mathematics</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>13</volume><issue>4</issue><spage>1311</spage><pages>1311-</pages><issn>2146-1147</issn><eissn>2146-1147</eissn><abstract>In this paper, we consider the problem of recovering solutions for matrix factorizations of the Helmholtz equation in a multidimensional bounded domain from their values on a part of the boundary of this domain, i.e., the Cauchy problem. An approximate solution to this problem is constructed based on the Carleman matrix method. Keywords: Ill-Posed Cauchy Problems, regularized solution, approximate solution, matrix factorization, elliptical system. AMS Subject Classification: 35J46, 35J56</abstract><cop>Istanbul</cop><pub>Turkic World Mathematical Society</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2146-1147 |
ispartof | TWMS journal of applied and engineering mathematics, 2023-01, Vol.13 (4), p.1311 |
issn | 2146-1147 2146-1147 |
language | eng |
recordid | cdi_proquest_journals_3126886256 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Applied mathematics Boundary value problems Cauchy problems Differential equations Fluid dynamics Helmholtz equations Matrix methods Partial differential equations Physics |
title | ON A REGULARIZED SOLUTION OF THE CAUCHY PROBLEM FOR MATRIX FACTORIZATIONS OF THE HELMHOLTZ EQUATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20A%20REGULARIZED%20SOLUTION%20OF%20THE%20CAUCHY%20PROBLEM%20FOR%20MATRIX%20FACTORIZATIONS%20OF%20THE%20HELMHOLTZ%20EQUATION&rft.jtitle=TWMS%20journal%20of%20applied%20and%20engineering%20mathematics&rft.au=Juraev,%20D.A&rft.date=2023-01-01&rft.volume=13&rft.issue=4&rft.spage=1311&rft.pages=1311-&rft.issn=2146-1147&rft.eissn=2146-1147&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA769581562%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126886256&rft_id=info:pmid/&rft_galeid=A769581562&rfr_iscdi=true |