Cross-border spillovers in G20 sovereign CDS markets: cluster analysis based on K-means machine learning algorithm and TVP–VAR models
This paper investigates cross-border spillovers between G20 sovereign credit default swap (CDS) markets over the period 2009–2023. First, using the unsupervised K -means machine learning algorithm, we cluster G20 countries into four groups based on similarities in the characteristics of sovereign CD...
Gespeichert in:
Veröffentlicht in: | Empirical economics 2024-12, Vol.67 (6), p.2463-2502 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2502 |
---|---|
container_issue | 6 |
container_start_page | 2463 |
container_title | Empirical economics |
container_volume | 67 |
creator | Chen, Zhizhen Shi, Guifen Sun, Boyang |
description | This paper investigates cross-border spillovers between G20 sovereign credit default swap (CDS) markets over the period 2009–2023. First, using the unsupervised
K
-means machine learning algorithm, we cluster G20 countries into four groups based on similarities in the characteristics of sovereign CDS time series. We then structure our analysis around these identified clusters. Next, we use the TVP–VAR–DY and TVP–VAR–BK models to examine spillover indices from both a static and dynamic perspective. In addition, we use spatial and network visualization tools to elucidate the spillover effects across time and frequency domains. Finally, we examine the correlation of spillover structures between high and low frequency domains. Our main findings suggest that: (1) from a dynamic perspective, sovereign risk spillovers exhibit significant volatility during global extreme events, with continuous effects over time; (2) from a static perspective, developing countries are primarily net exporters of sovereign risk, while most developed countries act as net importers. Moreover, there is evidence of spatial clustering and country development clustering effects in net sovereign risk spillovers; (3) sovereign risk has significant spillover effects, with low-frequency risk spillovers driven by high-frequency spillovers. The results contribute to the current understanding of global financial interconnectedness and risk transmission mechanisms. |
doi_str_mv | 10.1007/s00181-024-02628-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126819912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126819912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-296ac6bd436cb70480cd179c0d6821cebaf959ee941b8e29f2f8c7361650f46a3</originalsourceid><addsrcrecordid>eNp9kE1qHDEQRoWJwRPbF_BKkLWSktSjlrIzk_iHGBIS21uhVleP2-5RT1Q9Ae-y8wF8Q58kGk8guyyKouB7H9Rj7ETCewlQfyAAaaUAVZUxygqzx2ay0nNhnZJv2Ax0XYtaa3XA3hLdA4C282rGnhZ5JBLNmFvMnNb9MIy_MBPvEz9XwGl7Yb9MfPHpB1-F_IATfeRx2NBUgJDC8Eg98SYQtnxM_ItYYUhUovGuT8gHDDn1acnDsBxzP92tCtTy69tvL7-fb0-_89XY4kBHbL8LA-Hx333Ibs4-Xy8uxNXX88vF6ZWICmASypkQTdNW2sSmhspCbGXtIrTGKhmxCZ2bO0RXycaicp3qbKy1kWYOXWWCPmTvdr3rPP7cIE3-ftzk8gV5LZWx0jmpSkrtUnFrJ2Pn17kvzz96CX4r3O-E-yLcvwr3pkB6B1EJpyXmf9X_of4AqK2E7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126819912</pqid></control><display><type>article</type><title>Cross-border spillovers in G20 sovereign CDS markets: cluster analysis based on K-means machine learning algorithm and TVP–VAR models</title><source>SpringerNature Journals</source><creator>Chen, Zhizhen ; Shi, Guifen ; Sun, Boyang</creator><creatorcontrib>Chen, Zhizhen ; Shi, Guifen ; Sun, Boyang</creatorcontrib><description>This paper investigates cross-border spillovers between G20 sovereign credit default swap (CDS) markets over the period 2009–2023. First, using the unsupervised
K
-means machine learning algorithm, we cluster G20 countries into four groups based on similarities in the characteristics of sovereign CDS time series. We then structure our analysis around these identified clusters. Next, we use the TVP–VAR–DY and TVP–VAR–BK models to examine spillover indices from both a static and dynamic perspective. In addition, we use spatial and network visualization tools to elucidate the spillover effects across time and frequency domains. Finally, we examine the correlation of spillover structures between high and low frequency domains. Our main findings suggest that: (1) from a dynamic perspective, sovereign risk spillovers exhibit significant volatility during global extreme events, with continuous effects over time; (2) from a static perspective, developing countries are primarily net exporters of sovereign risk, while most developed countries act as net importers. Moreover, there is evidence of spatial clustering and country development clustering effects in net sovereign risk spillovers; (3) sovereign risk has significant spillover effects, with low-frequency risk spillovers driven by high-frequency spillovers. The results contribute to the current understanding of global financial interconnectedness and risk transmission mechanisms.</description><identifier>ISSN: 0377-7332</identifier><identifier>EISSN: 1435-8921</identifier><identifier>DOI: 10.1007/s00181-024-02628-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Borders ; Cluster analysis ; Clustering ; Connectedness ; Credit default swaps ; Developed countries ; Developing countries ; Econometrics ; Economic theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Finance ; Insurance ; LDCs ; Machine learning ; Management ; Markets ; Statistics for Business ; Time series ; Visualization ; Volatility</subject><ispartof>Empirical economics, 2024-12, Vol.67 (6), p.2463-2502</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-296ac6bd436cb70480cd179c0d6821cebaf959ee941b8e29f2f8c7361650f46a3</cites><orcidid>0000-0001-7947-1224 ; 0009-0000-5981-5659 ; 0009-0006-6508-4710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00181-024-02628-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00181-024-02628-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Zhizhen</creatorcontrib><creatorcontrib>Shi, Guifen</creatorcontrib><creatorcontrib>Sun, Boyang</creatorcontrib><title>Cross-border spillovers in G20 sovereign CDS markets: cluster analysis based on K-means machine learning algorithm and TVP–VAR models</title><title>Empirical economics</title><addtitle>Empir Econ</addtitle><description>This paper investigates cross-border spillovers between G20 sovereign credit default swap (CDS) markets over the period 2009–2023. First, using the unsupervised
K
-means machine learning algorithm, we cluster G20 countries into four groups based on similarities in the characteristics of sovereign CDS time series. We then structure our analysis around these identified clusters. Next, we use the TVP–VAR–DY and TVP–VAR–BK models to examine spillover indices from both a static and dynamic perspective. In addition, we use spatial and network visualization tools to elucidate the spillover effects across time and frequency domains. Finally, we examine the correlation of spillover structures between high and low frequency domains. Our main findings suggest that: (1) from a dynamic perspective, sovereign risk spillovers exhibit significant volatility during global extreme events, with continuous effects over time; (2) from a static perspective, developing countries are primarily net exporters of sovereign risk, while most developed countries act as net importers. Moreover, there is evidence of spatial clustering and country development clustering effects in net sovereign risk spillovers; (3) sovereign risk has significant spillover effects, with low-frequency risk spillovers driven by high-frequency spillovers. The results contribute to the current understanding of global financial interconnectedness and risk transmission mechanisms.</description><subject>Algorithms</subject><subject>Borders</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Connectedness</subject><subject>Credit default swaps</subject><subject>Developed countries</subject><subject>Developing countries</subject><subject>Econometrics</subject><subject>Economic theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>Insurance</subject><subject>LDCs</subject><subject>Machine learning</subject><subject>Management</subject><subject>Markets</subject><subject>Statistics for Business</subject><subject>Time series</subject><subject>Visualization</subject><subject>Volatility</subject><issn>0377-7332</issn><issn>1435-8921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1qHDEQRoWJwRPbF_BKkLWSktSjlrIzk_iHGBIS21uhVleP2-5RT1Q9Ae-y8wF8Q58kGk8guyyKouB7H9Rj7ETCewlQfyAAaaUAVZUxygqzx2ay0nNhnZJv2Ax0XYtaa3XA3hLdA4C282rGnhZ5JBLNmFvMnNb9MIy_MBPvEz9XwGl7Yb9MfPHpB1-F_IATfeRx2NBUgJDC8Eg98SYQtnxM_ItYYUhUovGuT8gHDDn1acnDsBxzP92tCtTy69tvL7-fb0-_89XY4kBHbL8LA-Hx333Ibs4-Xy8uxNXX88vF6ZWICmASypkQTdNW2sSmhspCbGXtIrTGKhmxCZ2bO0RXycaicp3qbKy1kWYOXWWCPmTvdr3rPP7cIE3-ftzk8gV5LZWx0jmpSkrtUnFrJ2Pn17kvzz96CX4r3O-E-yLcvwr3pkB6B1EJpyXmf9X_of4AqK2E7g</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Chen, Zhizhen</creator><creator>Shi, Guifen</creator><creator>Sun, Boyang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0001-7947-1224</orcidid><orcidid>https://orcid.org/0009-0000-5981-5659</orcidid><orcidid>https://orcid.org/0009-0006-6508-4710</orcidid></search><sort><creationdate>20241201</creationdate><title>Cross-border spillovers in G20 sovereign CDS markets: cluster analysis based on K-means machine learning algorithm and TVP–VAR models</title><author>Chen, Zhizhen ; Shi, Guifen ; Sun, Boyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-296ac6bd436cb70480cd179c0d6821cebaf959ee941b8e29f2f8c7361650f46a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Borders</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Connectedness</topic><topic>Credit default swaps</topic><topic>Developed countries</topic><topic>Developing countries</topic><topic>Econometrics</topic><topic>Economic theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>Insurance</topic><topic>LDCs</topic><topic>Machine learning</topic><topic>Management</topic><topic>Markets</topic><topic>Statistics for Business</topic><topic>Time series</topic><topic>Visualization</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhizhen</creatorcontrib><creatorcontrib>Shi, Guifen</creatorcontrib><creatorcontrib>Sun, Boyang</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Empirical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhizhen</au><au>Shi, Guifen</au><au>Sun, Boyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-border spillovers in G20 sovereign CDS markets: cluster analysis based on K-means machine learning algorithm and TVP–VAR models</atitle><jtitle>Empirical economics</jtitle><stitle>Empir Econ</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>67</volume><issue>6</issue><spage>2463</spage><epage>2502</epage><pages>2463-2502</pages><issn>0377-7332</issn><eissn>1435-8921</eissn><abstract>This paper investigates cross-border spillovers between G20 sovereign credit default swap (CDS) markets over the period 2009–2023. First, using the unsupervised
K
-means machine learning algorithm, we cluster G20 countries into four groups based on similarities in the characteristics of sovereign CDS time series. We then structure our analysis around these identified clusters. Next, we use the TVP–VAR–DY and TVP–VAR–BK models to examine spillover indices from both a static and dynamic perspective. In addition, we use spatial and network visualization tools to elucidate the spillover effects across time and frequency domains. Finally, we examine the correlation of spillover structures between high and low frequency domains. Our main findings suggest that: (1) from a dynamic perspective, sovereign risk spillovers exhibit significant volatility during global extreme events, with continuous effects over time; (2) from a static perspective, developing countries are primarily net exporters of sovereign risk, while most developed countries act as net importers. Moreover, there is evidence of spatial clustering and country development clustering effects in net sovereign risk spillovers; (3) sovereign risk has significant spillover effects, with low-frequency risk spillovers driven by high-frequency spillovers. The results contribute to the current understanding of global financial interconnectedness and risk transmission mechanisms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00181-024-02628-6</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0001-7947-1224</orcidid><orcidid>https://orcid.org/0009-0000-5981-5659</orcidid><orcidid>https://orcid.org/0009-0006-6508-4710</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-7332 |
ispartof | Empirical economics, 2024-12, Vol.67 (6), p.2463-2502 |
issn | 0377-7332 1435-8921 |
language | eng |
recordid | cdi_proquest_journals_3126819912 |
source | SpringerNature Journals |
subjects | Algorithms Borders Cluster analysis Clustering Connectedness Credit default swaps Developed countries Developing countries Econometrics Economic theory Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Finance Insurance LDCs Machine learning Management Markets Statistics for Business Time series Visualization Volatility |
title | Cross-border spillovers in G20 sovereign CDS markets: cluster analysis based on K-means machine learning algorithm and TVP–VAR models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-border%20spillovers%20in%20G20%20sovereign%20CDS%20markets:%20cluster%20analysis%20based%20on%20K-means%20machine%20learning%20algorithm%20and%20TVP%E2%80%93VAR%20models&rft.jtitle=Empirical%20economics&rft.au=Chen,%20Zhizhen&rft.date=2024-12-01&rft.volume=67&rft.issue=6&rft.spage=2463&rft.epage=2502&rft.pages=2463-2502&rft.issn=0377-7332&rft.eissn=1435-8921&rft_id=info:doi/10.1007/s00181-024-02628-6&rft_dat=%3Cproquest_cross%3E3126819912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126819912&rft_id=info:pmid/&rfr_iscdi=true |