Cross-border spillovers in G20 sovereign CDS markets: cluster analysis based on K-means machine learning algorithm and TVP–VAR models

This paper investigates cross-border spillovers between G20 sovereign credit default swap (CDS) markets over the period 2009–2023. First, using the unsupervised K -means machine learning algorithm, we cluster G20 countries into four groups based on similarities in the characteristics of sovereign CD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Empirical economics 2024-12, Vol.67 (6), p.2463-2502
Hauptverfasser: Chen, Zhizhen, Shi, Guifen, Sun, Boyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2502
container_issue 6
container_start_page 2463
container_title Empirical economics
container_volume 67
creator Chen, Zhizhen
Shi, Guifen
Sun, Boyang
description This paper investigates cross-border spillovers between G20 sovereign credit default swap (CDS) markets over the period 2009–2023. First, using the unsupervised K -means machine learning algorithm, we cluster G20 countries into four groups based on similarities in the characteristics of sovereign CDS time series. We then structure our analysis around these identified clusters. Next, we use the TVP–VAR–DY and TVP–VAR–BK models to examine spillover indices from both a static and dynamic perspective. In addition, we use spatial and network visualization tools to elucidate the spillover effects across time and frequency domains. Finally, we examine the correlation of spillover structures between high and low frequency domains. Our main findings suggest that: (1) from a dynamic perspective, sovereign risk spillovers exhibit significant volatility during global extreme events, with continuous effects over time; (2) from a static perspective, developing countries are primarily net exporters of sovereign risk, while most developed countries act as net importers. Moreover, there is evidence of spatial clustering and country development clustering effects in net sovereign risk spillovers; (3) sovereign risk has significant spillover effects, with low-frequency risk spillovers driven by high-frequency spillovers. The results contribute to the current understanding of global financial interconnectedness and risk transmission mechanisms.
doi_str_mv 10.1007/s00181-024-02628-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126819912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126819912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-296ac6bd436cb70480cd179c0d6821cebaf959ee941b8e29f2f8c7361650f46a3</originalsourceid><addsrcrecordid>eNp9kE1qHDEQRoWJwRPbF_BKkLWSktSjlrIzk_iHGBIS21uhVleP2-5RT1Q9Ae-y8wF8Q58kGk8guyyKouB7H9Rj7ETCewlQfyAAaaUAVZUxygqzx2ay0nNhnZJv2Ax0XYtaa3XA3hLdA4C282rGnhZ5JBLNmFvMnNb9MIy_MBPvEz9XwGl7Yb9MfPHpB1-F_IATfeRx2NBUgJDC8Eg98SYQtnxM_ItYYUhUovGuT8gHDDn1acnDsBxzP92tCtTy69tvL7-fb0-_89XY4kBHbL8LA-Hx333Ibs4-Xy8uxNXX88vF6ZWICmASypkQTdNW2sSmhspCbGXtIrTGKhmxCZ2bO0RXycaicp3qbKy1kWYOXWWCPmTvdr3rPP7cIE3-ftzk8gV5LZWx0jmpSkrtUnFrJ2Pn17kvzz96CX4r3O-E-yLcvwr3pkB6B1EJpyXmf9X_of4AqK2E7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126819912</pqid></control><display><type>article</type><title>Cross-border spillovers in G20 sovereign CDS markets: cluster analysis based on K-means machine learning algorithm and TVP–VAR models</title><source>SpringerNature Journals</source><creator>Chen, Zhizhen ; Shi, Guifen ; Sun, Boyang</creator><creatorcontrib>Chen, Zhizhen ; Shi, Guifen ; Sun, Boyang</creatorcontrib><description>This paper investigates cross-border spillovers between G20 sovereign credit default swap (CDS) markets over the period 2009–2023. First, using the unsupervised K -means machine learning algorithm, we cluster G20 countries into four groups based on similarities in the characteristics of sovereign CDS time series. We then structure our analysis around these identified clusters. Next, we use the TVP–VAR–DY and TVP–VAR–BK models to examine spillover indices from both a static and dynamic perspective. In addition, we use spatial and network visualization tools to elucidate the spillover effects across time and frequency domains. Finally, we examine the correlation of spillover structures between high and low frequency domains. Our main findings suggest that: (1) from a dynamic perspective, sovereign risk spillovers exhibit significant volatility during global extreme events, with continuous effects over time; (2) from a static perspective, developing countries are primarily net exporters of sovereign risk, while most developed countries act as net importers. Moreover, there is evidence of spatial clustering and country development clustering effects in net sovereign risk spillovers; (3) sovereign risk has significant spillover effects, with low-frequency risk spillovers driven by high-frequency spillovers. The results contribute to the current understanding of global financial interconnectedness and risk transmission mechanisms.</description><identifier>ISSN: 0377-7332</identifier><identifier>EISSN: 1435-8921</identifier><identifier>DOI: 10.1007/s00181-024-02628-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Borders ; Cluster analysis ; Clustering ; Connectedness ; Credit default swaps ; Developed countries ; Developing countries ; Econometrics ; Economic theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Finance ; Insurance ; LDCs ; Machine learning ; Management ; Markets ; Statistics for Business ; Time series ; Visualization ; Volatility</subject><ispartof>Empirical economics, 2024-12, Vol.67 (6), p.2463-2502</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-296ac6bd436cb70480cd179c0d6821cebaf959ee941b8e29f2f8c7361650f46a3</cites><orcidid>0000-0001-7947-1224 ; 0009-0000-5981-5659 ; 0009-0006-6508-4710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00181-024-02628-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00181-024-02628-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Zhizhen</creatorcontrib><creatorcontrib>Shi, Guifen</creatorcontrib><creatorcontrib>Sun, Boyang</creatorcontrib><title>Cross-border spillovers in G20 sovereign CDS markets: cluster analysis based on K-means machine learning algorithm and TVP–VAR models</title><title>Empirical economics</title><addtitle>Empir Econ</addtitle><description>This paper investigates cross-border spillovers between G20 sovereign credit default swap (CDS) markets over the period 2009–2023. First, using the unsupervised K -means machine learning algorithm, we cluster G20 countries into four groups based on similarities in the characteristics of sovereign CDS time series. We then structure our analysis around these identified clusters. Next, we use the TVP–VAR–DY and TVP–VAR–BK models to examine spillover indices from both a static and dynamic perspective. In addition, we use spatial and network visualization tools to elucidate the spillover effects across time and frequency domains. Finally, we examine the correlation of spillover structures between high and low frequency domains. Our main findings suggest that: (1) from a dynamic perspective, sovereign risk spillovers exhibit significant volatility during global extreme events, with continuous effects over time; (2) from a static perspective, developing countries are primarily net exporters of sovereign risk, while most developed countries act as net importers. Moreover, there is evidence of spatial clustering and country development clustering effects in net sovereign risk spillovers; (3) sovereign risk has significant spillover effects, with low-frequency risk spillovers driven by high-frequency spillovers. The results contribute to the current understanding of global financial interconnectedness and risk transmission mechanisms.</description><subject>Algorithms</subject><subject>Borders</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Connectedness</subject><subject>Credit default swaps</subject><subject>Developed countries</subject><subject>Developing countries</subject><subject>Econometrics</subject><subject>Economic theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>Insurance</subject><subject>LDCs</subject><subject>Machine learning</subject><subject>Management</subject><subject>Markets</subject><subject>Statistics for Business</subject><subject>Time series</subject><subject>Visualization</subject><subject>Volatility</subject><issn>0377-7332</issn><issn>1435-8921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1qHDEQRoWJwRPbF_BKkLWSktSjlrIzk_iHGBIS21uhVleP2-5RT1Q9Ae-y8wF8Q58kGk8guyyKouB7H9Rj7ETCewlQfyAAaaUAVZUxygqzx2ay0nNhnZJv2Ax0XYtaa3XA3hLdA4C282rGnhZ5JBLNmFvMnNb9MIy_MBPvEz9XwGl7Yb9MfPHpB1-F_IATfeRx2NBUgJDC8Eg98SYQtnxM_ItYYUhUovGuT8gHDDn1acnDsBxzP92tCtTy69tvL7-fb0-_89XY4kBHbL8LA-Hx333Ibs4-Xy8uxNXX88vF6ZWICmASypkQTdNW2sSmhspCbGXtIrTGKhmxCZ2bO0RXycaicp3qbKy1kWYOXWWCPmTvdr3rPP7cIE3-ftzk8gV5LZWx0jmpSkrtUnFrJ2Pn17kvzz96CX4r3O-E-yLcvwr3pkB6B1EJpyXmf9X_of4AqK2E7g</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Chen, Zhizhen</creator><creator>Shi, Guifen</creator><creator>Sun, Boyang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0001-7947-1224</orcidid><orcidid>https://orcid.org/0009-0000-5981-5659</orcidid><orcidid>https://orcid.org/0009-0006-6508-4710</orcidid></search><sort><creationdate>20241201</creationdate><title>Cross-border spillovers in G20 sovereign CDS markets: cluster analysis based on K-means machine learning algorithm and TVP–VAR models</title><author>Chen, Zhizhen ; Shi, Guifen ; Sun, Boyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-296ac6bd436cb70480cd179c0d6821cebaf959ee941b8e29f2f8c7361650f46a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Borders</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Connectedness</topic><topic>Credit default swaps</topic><topic>Developed countries</topic><topic>Developing countries</topic><topic>Econometrics</topic><topic>Economic theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>Insurance</topic><topic>LDCs</topic><topic>Machine learning</topic><topic>Management</topic><topic>Markets</topic><topic>Statistics for Business</topic><topic>Time series</topic><topic>Visualization</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhizhen</creatorcontrib><creatorcontrib>Shi, Guifen</creatorcontrib><creatorcontrib>Sun, Boyang</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Empirical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhizhen</au><au>Shi, Guifen</au><au>Sun, Boyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-border spillovers in G20 sovereign CDS markets: cluster analysis based on K-means machine learning algorithm and TVP–VAR models</atitle><jtitle>Empirical economics</jtitle><stitle>Empir Econ</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>67</volume><issue>6</issue><spage>2463</spage><epage>2502</epage><pages>2463-2502</pages><issn>0377-7332</issn><eissn>1435-8921</eissn><abstract>This paper investigates cross-border spillovers between G20 sovereign credit default swap (CDS) markets over the period 2009–2023. First, using the unsupervised K -means machine learning algorithm, we cluster G20 countries into four groups based on similarities in the characteristics of sovereign CDS time series. We then structure our analysis around these identified clusters. Next, we use the TVP–VAR–DY and TVP–VAR–BK models to examine spillover indices from both a static and dynamic perspective. In addition, we use spatial and network visualization tools to elucidate the spillover effects across time and frequency domains. Finally, we examine the correlation of spillover structures between high and low frequency domains. Our main findings suggest that: (1) from a dynamic perspective, sovereign risk spillovers exhibit significant volatility during global extreme events, with continuous effects over time; (2) from a static perspective, developing countries are primarily net exporters of sovereign risk, while most developed countries act as net importers. Moreover, there is evidence of spatial clustering and country development clustering effects in net sovereign risk spillovers; (3) sovereign risk has significant spillover effects, with low-frequency risk spillovers driven by high-frequency spillovers. The results contribute to the current understanding of global financial interconnectedness and risk transmission mechanisms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00181-024-02628-6</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0001-7947-1224</orcidid><orcidid>https://orcid.org/0009-0000-5981-5659</orcidid><orcidid>https://orcid.org/0009-0006-6508-4710</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0377-7332
ispartof Empirical economics, 2024-12, Vol.67 (6), p.2463-2502
issn 0377-7332
1435-8921
language eng
recordid cdi_proquest_journals_3126819912
source SpringerNature Journals
subjects Algorithms
Borders
Cluster analysis
Clustering
Connectedness
Credit default swaps
Developed countries
Developing countries
Econometrics
Economic theory
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Finance
Insurance
LDCs
Machine learning
Management
Markets
Statistics for Business
Time series
Visualization
Volatility
title Cross-border spillovers in G20 sovereign CDS markets: cluster analysis based on K-means machine learning algorithm and TVP–VAR models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-border%20spillovers%20in%20G20%20sovereign%20CDS%20markets:%20cluster%20analysis%20based%20on%20K-means%20machine%20learning%20algorithm%20and%20TVP%E2%80%93VAR%20models&rft.jtitle=Empirical%20economics&rft.au=Chen,%20Zhizhen&rft.date=2024-12-01&rft.volume=67&rft.issue=6&rft.spage=2463&rft.epage=2502&rft.pages=2463-2502&rft.issn=0377-7332&rft.eissn=1435-8921&rft_id=info:doi/10.1007/s00181-024-02628-6&rft_dat=%3Cproquest_cross%3E3126819912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126819912&rft_id=info:pmid/&rfr_iscdi=true