Design and optimization of plasmonic metal nanoantennas on a glass substrate for efficient solar-driven evaporation of seawater: an optical and numerical simulation approach
In this study, we present optical and numerical analysis methods to enhance the absorbed power of metallic nanoantenna arrays on a glass substrate under solar irradiance. A comprehensive exploration of various materials (Au, Pt, core-shell Ag-Pt, and Al-Al2O3), morphologies (rectangular prism, cylin...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2024-11, Vol.26 (11), p.260, Article 260 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 260 |
container_title | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology |
container_volume | 26 |
creator | Aghlmandi Sadigh Bagheri, Mahdi Yadipour, Reza Asgharian, Amir |
description | In this study, we present optical and numerical analysis methods to enhance the absorbed power of metallic nanoantenna arrays on a glass substrate under solar irradiance. A comprehensive exploration of various materials (Au, Pt, core-shell Ag-Pt, and Al-Al2O3), morphologies (rectangular prism, cylindrical, triangular prism, and hexagram prism with the same volume of metal), and arrangements (periodic, disorder, and amorphous) was conducted to optimize absorbed power and heat production for maximizing the photothermal effect. In periodic arrangements, the absorbed power increased 1.5 to 3 times (minimum to maximum) by optimizing the period across different nanoantenna configurations. Morphologies characterized by sharp angles (triangular, hexagram) exhibited 1.3 to 1.7 times higher absorbed power. Despite Pt’s shorter absorption decay length, it demonstrated broader absorption across the solar spectrum, resulting in 1.15 to 1.3 times more absorbed power than Au. Incorporating an Ag core with a Pt shell enhanced the absorbed power by 1.2 to 1.35 times compared to Au. The hexagram Ag-Pt nanoantenna displayed the highest absorbed power in periodic and disordered arrangements, while the triangular Pt excelled in amorphous configurations. The triangular Al-Al2O3 nanoantenna exhibited 1.14 times higher absorbed power compared to the rectangular Au, presenting a cost-effective manufacturing option. The behavior of plasmon fields and destructive interference was investigated for the nanoantenna array. Three absorption regions were observed: near-distance with minimum absorption due to plasma turbulence, middle-distance (resonance period) with maximum absorption due to plasmon fields enhanced each other, and far-distance with constant absorption due to interference happening between the nanoantenna and incident light without other effects. |
doi_str_mv | 10.1007/s11051-024-06125-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126816728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126816728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c156t-cdcd173fa3e0c96fe9ddb616bc49c0fc422109c1665f0d1f61eca5f58c4885063</originalsourceid><addsrcrecordid>eNo9kc1KxTAQhYsoqFdfwFXAdTSTtmnrTvwHwY2CuzA3TTTSJjVJveg7-Y7Ge8XVzMA55xs4RXEE7AQYa04jAKuBMl5RJoDXdLVV7EHdcNp24nk772XbUtaIarfYj_GNMRC843vF96WO9sURdD3xU7Kj_cJkvSPekGnAOHpnFRl1woE4dB5d0s5hJFmC5CUrIonzMqaASRPjA9HGWGW1SyT6AQPtg_3QjugPnHz4z44aV9kRzjJ5DVYZ8PuEm0cd1le04zxsDDhNwaN6PSh2DA5RH_7NRfF0ffV4cUvvH27uLs7vqYJaJKp61UNTGiw1U50wuuv7pQCxVFWnmFEV58A6BULUhvVgBGiFtalbVbVtzUS5KI43uRn7PuuY5Jufg8tIWQIXLYiGt1nFNyoVfIxBGzkFO2L4lMDkby1yU4vMtch1LXJV_gBGTIYV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126816728</pqid></control><display><type>article</type><title>Design and optimization of plasmonic metal nanoantennas on a glass substrate for efficient solar-driven evaporation of seawater: an optical and numerical simulation approach</title><source>SpringerNature Journals</source><creator>Aghlmandi Sadigh Bagheri, Mahdi ; Yadipour, Reza ; Asgharian, Amir</creator><creatorcontrib>Aghlmandi Sadigh Bagheri, Mahdi ; Yadipour, Reza ; Asgharian, Amir</creatorcontrib><description>In this study, we present optical and numerical analysis methods to enhance the absorbed power of metallic nanoantenna arrays on a glass substrate under solar irradiance. A comprehensive exploration of various materials (Au, Pt, core-shell Ag-Pt, and Al-Al2O3), morphologies (rectangular prism, cylindrical, triangular prism, and hexagram prism with the same volume of metal), and arrangements (periodic, disorder, and amorphous) was conducted to optimize absorbed power and heat production for maximizing the photothermal effect. In periodic arrangements, the absorbed power increased 1.5 to 3 times (minimum to maximum) by optimizing the period across different nanoantenna configurations. Morphologies characterized by sharp angles (triangular, hexagram) exhibited 1.3 to 1.7 times higher absorbed power. Despite Pt’s shorter absorption decay length, it demonstrated broader absorption across the solar spectrum, resulting in 1.15 to 1.3 times more absorbed power than Au. Incorporating an Ag core with a Pt shell enhanced the absorbed power by 1.2 to 1.35 times compared to Au. The hexagram Ag-Pt nanoantenna displayed the highest absorbed power in periodic and disordered arrangements, while the triangular Pt excelled in amorphous configurations. The triangular Al-Al2O3 nanoantenna exhibited 1.14 times higher absorbed power compared to the rectangular Au, presenting a cost-effective manufacturing option. The behavior of plasmon fields and destructive interference was investigated for the nanoantenna array. Three absorption regions were observed: near-distance with minimum absorption due to plasma turbulence, middle-distance (resonance period) with maximum absorption due to plasmon fields enhanced each other, and far-distance with constant absorption due to interference happening between the nanoantenna and incident light without other effects.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-024-06125-w</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Absorption ; Arrays ; Chemical analysis ; Configurations ; Design optimization ; Evaporation ; Glass substrates ; Gold ; Incident light ; Irradiance ; Mathematical models ; Morphology ; Nanoantennas ; Numerical analysis ; Plant layout ; Plasma turbulence ; Plasmons ; Platinum ; Seawater ; Silver ; Solar radiation ; Water analysis</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2024-11, Vol.26 (11), p.260, Article 260</ispartof><rights>Copyright Springer Nature B.V. Nov 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c156t-cdcd173fa3e0c96fe9ddb616bc49c0fc422109c1665f0d1f61eca5f58c4885063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aghlmandi Sadigh Bagheri, Mahdi</creatorcontrib><creatorcontrib>Yadipour, Reza</creatorcontrib><creatorcontrib>Asgharian, Amir</creatorcontrib><title>Design and optimization of plasmonic metal nanoantennas on a glass substrate for efficient solar-driven evaporation of seawater: an optical and numerical simulation approach</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><description>In this study, we present optical and numerical analysis methods to enhance the absorbed power of metallic nanoantenna arrays on a glass substrate under solar irradiance. A comprehensive exploration of various materials (Au, Pt, core-shell Ag-Pt, and Al-Al2O3), morphologies (rectangular prism, cylindrical, triangular prism, and hexagram prism with the same volume of metal), and arrangements (periodic, disorder, and amorphous) was conducted to optimize absorbed power and heat production for maximizing the photothermal effect. In periodic arrangements, the absorbed power increased 1.5 to 3 times (minimum to maximum) by optimizing the period across different nanoantenna configurations. Morphologies characterized by sharp angles (triangular, hexagram) exhibited 1.3 to 1.7 times higher absorbed power. Despite Pt’s shorter absorption decay length, it demonstrated broader absorption across the solar spectrum, resulting in 1.15 to 1.3 times more absorbed power than Au. Incorporating an Ag core with a Pt shell enhanced the absorbed power by 1.2 to 1.35 times compared to Au. The hexagram Ag-Pt nanoantenna displayed the highest absorbed power in periodic and disordered arrangements, while the triangular Pt excelled in amorphous configurations. The triangular Al-Al2O3 nanoantenna exhibited 1.14 times higher absorbed power compared to the rectangular Au, presenting a cost-effective manufacturing option. The behavior of plasmon fields and destructive interference was investigated for the nanoantenna array. Three absorption regions were observed: near-distance with minimum absorption due to plasma turbulence, middle-distance (resonance period) with maximum absorption due to plasmon fields enhanced each other, and far-distance with constant absorption due to interference happening between the nanoantenna and incident light without other effects.</description><subject>Absorption</subject><subject>Arrays</subject><subject>Chemical analysis</subject><subject>Configurations</subject><subject>Design optimization</subject><subject>Evaporation</subject><subject>Glass substrates</subject><subject>Gold</subject><subject>Incident light</subject><subject>Irradiance</subject><subject>Mathematical models</subject><subject>Morphology</subject><subject>Nanoantennas</subject><subject>Numerical analysis</subject><subject>Plant layout</subject><subject>Plasma turbulence</subject><subject>Plasmons</subject><subject>Platinum</subject><subject>Seawater</subject><subject>Silver</subject><subject>Solar radiation</subject><subject>Water analysis</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kc1KxTAQhYsoqFdfwFXAdTSTtmnrTvwHwY2CuzA3TTTSJjVJveg7-Y7Ge8XVzMA55xs4RXEE7AQYa04jAKuBMl5RJoDXdLVV7EHdcNp24nk772XbUtaIarfYj_GNMRC843vF96WO9sURdD3xU7Kj_cJkvSPekGnAOHpnFRl1woE4dB5d0s5hJFmC5CUrIonzMqaASRPjA9HGWGW1SyT6AQPtg_3QjugPnHz4z44aV9kRzjJ5DVYZ8PuEm0cd1le04zxsDDhNwaN6PSh2DA5RH_7NRfF0ffV4cUvvH27uLs7vqYJaJKp61UNTGiw1U50wuuv7pQCxVFWnmFEV58A6BULUhvVgBGiFtalbVbVtzUS5KI43uRn7PuuY5Jufg8tIWQIXLYiGt1nFNyoVfIxBGzkFO2L4lMDkby1yU4vMtch1LXJV_gBGTIYV</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Aghlmandi Sadigh Bagheri, Mahdi</creator><creator>Yadipour, Reza</creator><creator>Asgharian, Amir</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>202411</creationdate><title>Design and optimization of plasmonic metal nanoantennas on a glass substrate for efficient solar-driven evaporation of seawater: an optical and numerical simulation approach</title><author>Aghlmandi Sadigh Bagheri, Mahdi ; Yadipour, Reza ; Asgharian, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c156t-cdcd173fa3e0c96fe9ddb616bc49c0fc422109c1665f0d1f61eca5f58c4885063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption</topic><topic>Arrays</topic><topic>Chemical analysis</topic><topic>Configurations</topic><topic>Design optimization</topic><topic>Evaporation</topic><topic>Glass substrates</topic><topic>Gold</topic><topic>Incident light</topic><topic>Irradiance</topic><topic>Mathematical models</topic><topic>Morphology</topic><topic>Nanoantennas</topic><topic>Numerical analysis</topic><topic>Plant layout</topic><topic>Plasma turbulence</topic><topic>Plasmons</topic><topic>Platinum</topic><topic>Seawater</topic><topic>Silver</topic><topic>Solar radiation</topic><topic>Water analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Aghlmandi Sadigh Bagheri, Mahdi</creatorcontrib><creatorcontrib>Yadipour, Reza</creatorcontrib><creatorcontrib>Asgharian, Amir</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aghlmandi Sadigh Bagheri, Mahdi</au><au>Yadipour, Reza</au><au>Asgharian, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and optimization of plasmonic metal nanoantennas on a glass substrate for efficient solar-driven evaporation of seawater: an optical and numerical simulation approach</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><date>2024-11</date><risdate>2024</risdate><volume>26</volume><issue>11</issue><spage>260</spage><pages>260-</pages><artnum>260</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>In this study, we present optical and numerical analysis methods to enhance the absorbed power of metallic nanoantenna arrays on a glass substrate under solar irradiance. A comprehensive exploration of various materials (Au, Pt, core-shell Ag-Pt, and Al-Al2O3), morphologies (rectangular prism, cylindrical, triangular prism, and hexagram prism with the same volume of metal), and arrangements (periodic, disorder, and amorphous) was conducted to optimize absorbed power and heat production for maximizing the photothermal effect. In periodic arrangements, the absorbed power increased 1.5 to 3 times (minimum to maximum) by optimizing the period across different nanoantenna configurations. Morphologies characterized by sharp angles (triangular, hexagram) exhibited 1.3 to 1.7 times higher absorbed power. Despite Pt’s shorter absorption decay length, it demonstrated broader absorption across the solar spectrum, resulting in 1.15 to 1.3 times more absorbed power than Au. Incorporating an Ag core with a Pt shell enhanced the absorbed power by 1.2 to 1.35 times compared to Au. The hexagram Ag-Pt nanoantenna displayed the highest absorbed power in periodic and disordered arrangements, while the triangular Pt excelled in amorphous configurations. The triangular Al-Al2O3 nanoantenna exhibited 1.14 times higher absorbed power compared to the rectangular Au, presenting a cost-effective manufacturing option. The behavior of plasmon fields and destructive interference was investigated for the nanoantenna array. Three absorption regions were observed: near-distance with minimum absorption due to plasma turbulence, middle-distance (resonance period) with maximum absorption due to plasmon fields enhanced each other, and far-distance with constant absorption due to interference happening between the nanoantenna and incident light without other effects.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11051-024-06125-w</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0764 |
ispartof | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2024-11, Vol.26 (11), p.260, Article 260 |
issn | 1388-0764 1572-896X |
language | eng |
recordid | cdi_proquest_journals_3126816728 |
source | SpringerNature Journals |
subjects | Absorption Arrays Chemical analysis Configurations Design optimization Evaporation Glass substrates Gold Incident light Irradiance Mathematical models Morphology Nanoantennas Numerical analysis Plant layout Plasma turbulence Plasmons Platinum Seawater Silver Solar radiation Water analysis |
title | Design and optimization of plasmonic metal nanoantennas on a glass substrate for efficient solar-driven evaporation of seawater: an optical and numerical simulation approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20optimization%20of%20plasmonic%20metal%20nanoantennas%20on%20a%20glass%20substrate%20for%20efficient%20solar-driven%20evaporation%20of%20seawater:%20an%20optical%20and%20numerical%20simulation%20approach&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Aghlmandi%20Sadigh%20Bagheri,%20Mahdi&rft.date=2024-11&rft.volume=26&rft.issue=11&rft.spage=260&rft.pages=260-&rft.artnum=260&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-024-06125-w&rft_dat=%3Cproquest_cross%3E3126816728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126816728&rft_id=info:pmid/&rfr_iscdi=true |