Design and optimization of plasmonic metal nanoantennas on a glass substrate for efficient solar-driven evaporation of seawater: an optical and numerical simulation approach

In this study, we present optical and numerical analysis methods to enhance the absorbed power of metallic nanoantenna arrays on a glass substrate under solar irradiance. A comprehensive exploration of various materials (Au, Pt, core-shell Ag-Pt, and Al-Al2O3), morphologies (rectangular prism, cylin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2024-11, Vol.26 (11), p.260, Article 260
Hauptverfasser: Aghlmandi Sadigh Bagheri, Mahdi, Yadipour, Reza, Asgharian, Amir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 260
container_title Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology
container_volume 26
creator Aghlmandi Sadigh Bagheri, Mahdi
Yadipour, Reza
Asgharian, Amir
description In this study, we present optical and numerical analysis methods to enhance the absorbed power of metallic nanoantenna arrays on a glass substrate under solar irradiance. A comprehensive exploration of various materials (Au, Pt, core-shell Ag-Pt, and Al-Al2O3), morphologies (rectangular prism, cylindrical, triangular prism, and hexagram prism with the same volume of metal), and arrangements (periodic, disorder, and amorphous) was conducted to optimize absorbed power and heat production for maximizing the photothermal effect. In periodic arrangements, the absorbed power increased 1.5 to 3 times (minimum to maximum) by optimizing the period across different nanoantenna configurations. Morphologies characterized by sharp angles (triangular, hexagram) exhibited 1.3 to 1.7 times higher absorbed power. Despite Pt’s shorter absorption decay length, it demonstrated broader absorption across the solar spectrum, resulting in 1.15 to 1.3 times more absorbed power than Au. Incorporating an Ag core with a Pt shell enhanced the absorbed power by 1.2 to 1.35 times compared to Au. The hexagram Ag-Pt nanoantenna displayed the highest absorbed power in periodic and disordered arrangements, while the triangular Pt excelled in amorphous configurations. The triangular Al-Al2O3 nanoantenna exhibited 1.14 times higher absorbed power compared to the rectangular Au, presenting a cost-effective manufacturing option. The behavior of plasmon fields and destructive interference was investigated for the nanoantenna array. Three absorption regions were observed: near-distance with minimum absorption due to plasma turbulence, middle-distance (resonance period) with maximum absorption due to plasmon fields enhanced each other, and far-distance with constant absorption due to interference happening between the nanoantenna and incident light without other effects.
doi_str_mv 10.1007/s11051-024-06125-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126816728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126816728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c156t-cdcd173fa3e0c96fe9ddb616bc49c0fc422109c1665f0d1f61eca5f58c4885063</originalsourceid><addsrcrecordid>eNo9kc1KxTAQhYsoqFdfwFXAdTSTtmnrTvwHwY2CuzA3TTTSJjVJveg7-Y7Ge8XVzMA55xs4RXEE7AQYa04jAKuBMl5RJoDXdLVV7EHdcNp24nk772XbUtaIarfYj_GNMRC843vF96WO9sURdD3xU7Kj_cJkvSPekGnAOHpnFRl1woE4dB5d0s5hJFmC5CUrIonzMqaASRPjA9HGWGW1SyT6AQPtg_3QjugPnHz4z44aV9kRzjJ5DVYZ8PuEm0cd1le04zxsDDhNwaN6PSh2DA5RH_7NRfF0ffV4cUvvH27uLs7vqYJaJKp61UNTGiw1U50wuuv7pQCxVFWnmFEV58A6BULUhvVgBGiFtalbVbVtzUS5KI43uRn7PuuY5Jufg8tIWQIXLYiGt1nFNyoVfIxBGzkFO2L4lMDkby1yU4vMtch1LXJV_gBGTIYV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126816728</pqid></control><display><type>article</type><title>Design and optimization of plasmonic metal nanoantennas on a glass substrate for efficient solar-driven evaporation of seawater: an optical and numerical simulation approach</title><source>SpringerNature Journals</source><creator>Aghlmandi Sadigh Bagheri, Mahdi ; Yadipour, Reza ; Asgharian, Amir</creator><creatorcontrib>Aghlmandi Sadigh Bagheri, Mahdi ; Yadipour, Reza ; Asgharian, Amir</creatorcontrib><description>In this study, we present optical and numerical analysis methods to enhance the absorbed power of metallic nanoantenna arrays on a glass substrate under solar irradiance. A comprehensive exploration of various materials (Au, Pt, core-shell Ag-Pt, and Al-Al2O3), morphologies (rectangular prism, cylindrical, triangular prism, and hexagram prism with the same volume of metal), and arrangements (periodic, disorder, and amorphous) was conducted to optimize absorbed power and heat production for maximizing the photothermal effect. In periodic arrangements, the absorbed power increased 1.5 to 3 times (minimum to maximum) by optimizing the period across different nanoantenna configurations. Morphologies characterized by sharp angles (triangular, hexagram) exhibited 1.3 to 1.7 times higher absorbed power. Despite Pt’s shorter absorption decay length, it demonstrated broader absorption across the solar spectrum, resulting in 1.15 to 1.3 times more absorbed power than Au. Incorporating an Ag core with a Pt shell enhanced the absorbed power by 1.2 to 1.35 times compared to Au. The hexagram Ag-Pt nanoantenna displayed the highest absorbed power in periodic and disordered arrangements, while the triangular Pt excelled in amorphous configurations. The triangular Al-Al2O3 nanoantenna exhibited 1.14 times higher absorbed power compared to the rectangular Au, presenting a cost-effective manufacturing option. The behavior of plasmon fields and destructive interference was investigated for the nanoantenna array. Three absorption regions were observed: near-distance with minimum absorption due to plasma turbulence, middle-distance (resonance period) with maximum absorption due to plasmon fields enhanced each other, and far-distance with constant absorption due to interference happening between the nanoantenna and incident light without other effects.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-024-06125-w</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Absorption ; Arrays ; Chemical analysis ; Configurations ; Design optimization ; Evaporation ; Glass substrates ; Gold ; Incident light ; Irradiance ; Mathematical models ; Morphology ; Nanoantennas ; Numerical analysis ; Plant layout ; Plasma turbulence ; Plasmons ; Platinum ; Seawater ; Silver ; Solar radiation ; Water analysis</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2024-11, Vol.26 (11), p.260, Article 260</ispartof><rights>Copyright Springer Nature B.V. Nov 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c156t-cdcd173fa3e0c96fe9ddb616bc49c0fc422109c1665f0d1f61eca5f58c4885063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aghlmandi Sadigh Bagheri, Mahdi</creatorcontrib><creatorcontrib>Yadipour, Reza</creatorcontrib><creatorcontrib>Asgharian, Amir</creatorcontrib><title>Design and optimization of plasmonic metal nanoantennas on a glass substrate for efficient solar-driven evaporation of seawater: an optical and numerical simulation approach</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><description>In this study, we present optical and numerical analysis methods to enhance the absorbed power of metallic nanoantenna arrays on a glass substrate under solar irradiance. A comprehensive exploration of various materials (Au, Pt, core-shell Ag-Pt, and Al-Al2O3), morphologies (rectangular prism, cylindrical, triangular prism, and hexagram prism with the same volume of metal), and arrangements (periodic, disorder, and amorphous) was conducted to optimize absorbed power and heat production for maximizing the photothermal effect. In periodic arrangements, the absorbed power increased 1.5 to 3 times (minimum to maximum) by optimizing the period across different nanoantenna configurations. Morphologies characterized by sharp angles (triangular, hexagram) exhibited 1.3 to 1.7 times higher absorbed power. Despite Pt’s shorter absorption decay length, it demonstrated broader absorption across the solar spectrum, resulting in 1.15 to 1.3 times more absorbed power than Au. Incorporating an Ag core with a Pt shell enhanced the absorbed power by 1.2 to 1.35 times compared to Au. The hexagram Ag-Pt nanoantenna displayed the highest absorbed power in periodic and disordered arrangements, while the triangular Pt excelled in amorphous configurations. The triangular Al-Al2O3 nanoantenna exhibited 1.14 times higher absorbed power compared to the rectangular Au, presenting a cost-effective manufacturing option. The behavior of plasmon fields and destructive interference was investigated for the nanoantenna array. Three absorption regions were observed: near-distance with minimum absorption due to plasma turbulence, middle-distance (resonance period) with maximum absorption due to plasmon fields enhanced each other, and far-distance with constant absorption due to interference happening between the nanoantenna and incident light without other effects.</description><subject>Absorption</subject><subject>Arrays</subject><subject>Chemical analysis</subject><subject>Configurations</subject><subject>Design optimization</subject><subject>Evaporation</subject><subject>Glass substrates</subject><subject>Gold</subject><subject>Incident light</subject><subject>Irradiance</subject><subject>Mathematical models</subject><subject>Morphology</subject><subject>Nanoantennas</subject><subject>Numerical analysis</subject><subject>Plant layout</subject><subject>Plasma turbulence</subject><subject>Plasmons</subject><subject>Platinum</subject><subject>Seawater</subject><subject>Silver</subject><subject>Solar radiation</subject><subject>Water analysis</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kc1KxTAQhYsoqFdfwFXAdTSTtmnrTvwHwY2CuzA3TTTSJjVJveg7-Y7Ge8XVzMA55xs4RXEE7AQYa04jAKuBMl5RJoDXdLVV7EHdcNp24nk772XbUtaIarfYj_GNMRC843vF96WO9sURdD3xU7Kj_cJkvSPekGnAOHpnFRl1woE4dB5d0s5hJFmC5CUrIonzMqaASRPjA9HGWGW1SyT6AQPtg_3QjugPnHz4z44aV9kRzjJ5DVYZ8PuEm0cd1le04zxsDDhNwaN6PSh2DA5RH_7NRfF0ffV4cUvvH27uLs7vqYJaJKp61UNTGiw1U50wuuv7pQCxVFWnmFEV58A6BULUhvVgBGiFtalbVbVtzUS5KI43uRn7PuuY5Jufg8tIWQIXLYiGt1nFNyoVfIxBGzkFO2L4lMDkby1yU4vMtch1LXJV_gBGTIYV</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Aghlmandi Sadigh Bagheri, Mahdi</creator><creator>Yadipour, Reza</creator><creator>Asgharian, Amir</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>202411</creationdate><title>Design and optimization of plasmonic metal nanoantennas on a glass substrate for efficient solar-driven evaporation of seawater: an optical and numerical simulation approach</title><author>Aghlmandi Sadigh Bagheri, Mahdi ; Yadipour, Reza ; Asgharian, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c156t-cdcd173fa3e0c96fe9ddb616bc49c0fc422109c1665f0d1f61eca5f58c4885063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption</topic><topic>Arrays</topic><topic>Chemical analysis</topic><topic>Configurations</topic><topic>Design optimization</topic><topic>Evaporation</topic><topic>Glass substrates</topic><topic>Gold</topic><topic>Incident light</topic><topic>Irradiance</topic><topic>Mathematical models</topic><topic>Morphology</topic><topic>Nanoantennas</topic><topic>Numerical analysis</topic><topic>Plant layout</topic><topic>Plasma turbulence</topic><topic>Plasmons</topic><topic>Platinum</topic><topic>Seawater</topic><topic>Silver</topic><topic>Solar radiation</topic><topic>Water analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Aghlmandi Sadigh Bagheri, Mahdi</creatorcontrib><creatorcontrib>Yadipour, Reza</creatorcontrib><creatorcontrib>Asgharian, Amir</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aghlmandi Sadigh Bagheri, Mahdi</au><au>Yadipour, Reza</au><au>Asgharian, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and optimization of plasmonic metal nanoantennas on a glass substrate for efficient solar-driven evaporation of seawater: an optical and numerical simulation approach</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><date>2024-11</date><risdate>2024</risdate><volume>26</volume><issue>11</issue><spage>260</spage><pages>260-</pages><artnum>260</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>In this study, we present optical and numerical analysis methods to enhance the absorbed power of metallic nanoantenna arrays on a glass substrate under solar irradiance. A comprehensive exploration of various materials (Au, Pt, core-shell Ag-Pt, and Al-Al2O3), morphologies (rectangular prism, cylindrical, triangular prism, and hexagram prism with the same volume of metal), and arrangements (periodic, disorder, and amorphous) was conducted to optimize absorbed power and heat production for maximizing the photothermal effect. In periodic arrangements, the absorbed power increased 1.5 to 3 times (minimum to maximum) by optimizing the period across different nanoantenna configurations. Morphologies characterized by sharp angles (triangular, hexagram) exhibited 1.3 to 1.7 times higher absorbed power. Despite Pt’s shorter absorption decay length, it demonstrated broader absorption across the solar spectrum, resulting in 1.15 to 1.3 times more absorbed power than Au. Incorporating an Ag core with a Pt shell enhanced the absorbed power by 1.2 to 1.35 times compared to Au. The hexagram Ag-Pt nanoantenna displayed the highest absorbed power in periodic and disordered arrangements, while the triangular Pt excelled in amorphous configurations. The triangular Al-Al2O3 nanoantenna exhibited 1.14 times higher absorbed power compared to the rectangular Au, presenting a cost-effective manufacturing option. The behavior of plasmon fields and destructive interference was investigated for the nanoantenna array. Three absorption regions were observed: near-distance with minimum absorption due to plasma turbulence, middle-distance (resonance period) with maximum absorption due to plasmon fields enhanced each other, and far-distance with constant absorption due to interference happening between the nanoantenna and incident light without other effects.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11051-024-06125-w</doi></addata></record>
fulltext fulltext
identifier ISSN: 1388-0764
ispartof Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2024-11, Vol.26 (11), p.260, Article 260
issn 1388-0764
1572-896X
language eng
recordid cdi_proquest_journals_3126816728
source SpringerNature Journals
subjects Absorption
Arrays
Chemical analysis
Configurations
Design optimization
Evaporation
Glass substrates
Gold
Incident light
Irradiance
Mathematical models
Morphology
Nanoantennas
Numerical analysis
Plant layout
Plasma turbulence
Plasmons
Platinum
Seawater
Silver
Solar radiation
Water analysis
title Design and optimization of plasmonic metal nanoantennas on a glass substrate for efficient solar-driven evaporation of seawater: an optical and numerical simulation approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20optimization%20of%20plasmonic%20metal%20nanoantennas%20on%20a%20glass%20substrate%20for%20efficient%20solar-driven%20evaporation%20of%20seawater:%20an%20optical%20and%20numerical%20simulation%20approach&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Aghlmandi%20Sadigh%20Bagheri,%20Mahdi&rft.date=2024-11&rft.volume=26&rft.issue=11&rft.spage=260&rft.pages=260-&rft.artnum=260&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-024-06125-w&rft_dat=%3Cproquest_cross%3E3126816728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126816728&rft_id=info:pmid/&rfr_iscdi=true