Universal finite-size scaling in the extraordinary-log boundary phase of 3d \(O(N)\) model

Recent advances in boundary critical phenomena have led to the discovery of a new surface universality class in the three-dimensional \(O(N)\) model. The newly found "extraordinary-log" phase can be realized on a two-dimensional surface for \(N< N_c\), with \(N_c>3\), and on a plane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Toldin, Francesco Parisen, Krishnan, Abijith, Metlitski, Max A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Toldin, Francesco Parisen
Krishnan, Abijith
Metlitski, Max A
description Recent advances in boundary critical phenomena have led to the discovery of a new surface universality class in the three-dimensional \(O(N)\) model. The newly found "extraordinary-log" phase can be realized on a two-dimensional surface for \(N< N_c\), with \(N_c>3\), and on a plane defect embedded into a three-dimensional system, for any \(N\). One of the key features of the extraordinary-log phase is the presence of logarithmic violations of standard finite-size scaling. In this work we study finite-size scaling in the extraordinary-log universality class by means of Monte Carlo simulations of an improved lattice model. We simulate the model with open boundary conditions, realizing the extraordinary-log phase on the surface for \(N=2,3\), as well as with fully periodic boundary conditions and in the presence of a plane defect for \(N=2,3,4\). In line with theory predictions, renormalization-group invariant observables studied here exhibit a logarithmic dependence on the size of the system. We numerically access not only the leading term in the \(\beta\)-function governing these logarithmic violations, but also the subleading term, which controls the evolution of the boundary phase diagram as a function of \(N\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3126807335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126807335</sourcerecordid><originalsourceid>FETCH-proquest_journals_31268073353</originalsourceid><addsrcrecordid>eNqNir0KwjAYAIMgWLTv8IFLOxRqYn92UZx00UUKJZqvbUpMatKK-vR28AGcjuNuQjzK2CrK15TOiO9cG8cxTTOaJMwjl7OWT7SOK6iklj1GTn4Q3I0rqWuQGvoGAV-95cYKqbl9R8rUcDWDFqNA13CHYCpgAorgGBzCIoS7EagWZFpx5dD_cU6Wu-1ps486ax4Dur5szWD1mEq2omkeZ4wl7L_rC9hdQYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126807335</pqid></control><display><type>article</type><title>Universal finite-size scaling in the extraordinary-log boundary phase of 3d \(O(N)\) model</title><source>Free E- Journals</source><creator>Toldin, Francesco Parisen ; Krishnan, Abijith ; Metlitski, Max A</creator><creatorcontrib>Toldin, Francesco Parisen ; Krishnan, Abijith ; Metlitski, Max A</creatorcontrib><description>Recent advances in boundary critical phenomena have led to the discovery of a new surface universality class in the three-dimensional \(O(N)\) model. The newly found "extraordinary-log" phase can be realized on a two-dimensional surface for \(N&lt; N_c\), with \(N_c&gt;3\), and on a plane defect embedded into a three-dimensional system, for any \(N\). One of the key features of the extraordinary-log phase is the presence of logarithmic violations of standard finite-size scaling. In this work we study finite-size scaling in the extraordinary-log universality class by means of Monte Carlo simulations of an improved lattice model. We simulate the model with open boundary conditions, realizing the extraordinary-log phase on the surface for \(N=2,3\), as well as with fully periodic boundary conditions and in the presence of a plane defect for \(N=2,3,4\). In line with theory predictions, renormalization-group invariant observables studied here exhibit a logarithmic dependence on the size of the system. We numerically access not only the leading term in the \(\beta\)-function governing these logarithmic violations, but also the subleading term, which controls the evolution of the boundary phase diagram as a function of \(N\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Critical phenomena ; Defects ; Logarithms ; Monte Carlo simulation ; Phase diagrams</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Toldin, Francesco Parisen</creatorcontrib><creatorcontrib>Krishnan, Abijith</creatorcontrib><creatorcontrib>Metlitski, Max A</creatorcontrib><title>Universal finite-size scaling in the extraordinary-log boundary phase of 3d \(O(N)\) model</title><title>arXiv.org</title><description>Recent advances in boundary critical phenomena have led to the discovery of a new surface universality class in the three-dimensional \(O(N)\) model. The newly found "extraordinary-log" phase can be realized on a two-dimensional surface for \(N&lt; N_c\), with \(N_c&gt;3\), and on a plane defect embedded into a three-dimensional system, for any \(N\). One of the key features of the extraordinary-log phase is the presence of logarithmic violations of standard finite-size scaling. In this work we study finite-size scaling in the extraordinary-log universality class by means of Monte Carlo simulations of an improved lattice model. We simulate the model with open boundary conditions, realizing the extraordinary-log phase on the surface for \(N=2,3\), as well as with fully periodic boundary conditions and in the presence of a plane defect for \(N=2,3,4\). In line with theory predictions, renormalization-group invariant observables studied here exhibit a logarithmic dependence on the size of the system. We numerically access not only the leading term in the \(\beta\)-function governing these logarithmic violations, but also the subleading term, which controls the evolution of the boundary phase diagram as a function of \(N\).</description><subject>Boundary conditions</subject><subject>Critical phenomena</subject><subject>Defects</subject><subject>Logarithms</subject><subject>Monte Carlo simulation</subject><subject>Phase diagrams</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNir0KwjAYAIMgWLTv8IFLOxRqYn92UZx00UUKJZqvbUpMatKK-vR28AGcjuNuQjzK2CrK15TOiO9cG8cxTTOaJMwjl7OWT7SOK6iklj1GTn4Q3I0rqWuQGvoGAV-95cYKqbl9R8rUcDWDFqNA13CHYCpgAorgGBzCIoS7EagWZFpx5dD_cU6Wu-1ps486ax4Dur5szWD1mEq2omkeZ4wl7L_rC9hdQYg</recordid><startdate>20241107</startdate><enddate>20241107</enddate><creator>Toldin, Francesco Parisen</creator><creator>Krishnan, Abijith</creator><creator>Metlitski, Max A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241107</creationdate><title>Universal finite-size scaling in the extraordinary-log boundary phase of 3d \(O(N)\) model</title><author>Toldin, Francesco Parisen ; Krishnan, Abijith ; Metlitski, Max A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31268073353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Critical phenomena</topic><topic>Defects</topic><topic>Logarithms</topic><topic>Monte Carlo simulation</topic><topic>Phase diagrams</topic><toplevel>online_resources</toplevel><creatorcontrib>Toldin, Francesco Parisen</creatorcontrib><creatorcontrib>Krishnan, Abijith</creatorcontrib><creatorcontrib>Metlitski, Max A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toldin, Francesco Parisen</au><au>Krishnan, Abijith</au><au>Metlitski, Max A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Universal finite-size scaling in the extraordinary-log boundary phase of 3d \(O(N)\) model</atitle><jtitle>arXiv.org</jtitle><date>2024-11-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recent advances in boundary critical phenomena have led to the discovery of a new surface universality class in the three-dimensional \(O(N)\) model. The newly found "extraordinary-log" phase can be realized on a two-dimensional surface for \(N&lt; N_c\), with \(N_c&gt;3\), and on a plane defect embedded into a three-dimensional system, for any \(N\). One of the key features of the extraordinary-log phase is the presence of logarithmic violations of standard finite-size scaling. In this work we study finite-size scaling in the extraordinary-log universality class by means of Monte Carlo simulations of an improved lattice model. We simulate the model with open boundary conditions, realizing the extraordinary-log phase on the surface for \(N=2,3\), as well as with fully periodic boundary conditions and in the presence of a plane defect for \(N=2,3,4\). In line with theory predictions, renormalization-group invariant observables studied here exhibit a logarithmic dependence on the size of the system. We numerically access not only the leading term in the \(\beta\)-function governing these logarithmic violations, but also the subleading term, which controls the evolution of the boundary phase diagram as a function of \(N\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3126807335
source Free E- Journals
subjects Boundary conditions
Critical phenomena
Defects
Logarithms
Monte Carlo simulation
Phase diagrams
title Universal finite-size scaling in the extraordinary-log boundary phase of 3d \(O(N)\) model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Universal%20finite-size%20scaling%20in%20the%20extraordinary-log%20boundary%20phase%20of%203d%20%5C(O(N)%5C)%20model&rft.jtitle=arXiv.org&rft.au=Toldin,%20Francesco%20Parisen&rft.date=2024-11-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3126807335%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126807335&rft_id=info:pmid/&rfr_iscdi=true