The effect of clay swelling on crack generation in red stratum soft rock during water-induced disintegration: a matrix-based discrete element simulation study

Red stratum soft rock, which is prevalent in the deep backfill regions of southwest China, exhibits water-induced disintegration characteristics that significantly impact the bearing capacity and deformation behaviours of the foundation. To further examine its damage evolution after encountering wat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of engineering geology and the environment 2024-12, Vol.83 (12), p.489, Article 489
Hauptverfasser: Li, Shiqi, Yang, Zhongping, Gao, Yuhao, Liu, Xinrong, Jin, Xiaoguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 489
container_title Bulletin of engineering geology and the environment
container_volume 83
creator Li, Shiqi
Yang, Zhongping
Gao, Yuhao
Liu, Xinrong
Jin, Xiaoguang
description Red stratum soft rock, which is prevalent in the deep backfill regions of southwest China, exhibits water-induced disintegration characteristics that significantly impact the bearing capacity and deformation behaviours of the foundation. To further examine its damage evolution after encountering water, a numerical simulation study was conducted utilising the particle discrete element method, based on immersion testing. The water-induced disintegration of soft rock is characterised by the expansion of clay mineral particles and a reduction in breaking force and residual strength coefficient. The findings indicate that the disintegration of red stratum soft rock can be categorised into three stages: Surface Erosion, Crack Development, and Crack Penetration. Natural cracks enhances permeability, while any increase in clay mineral content heightens hydration sensitivity. These factors decrease the slaking durability index, exacerbating failure and potentially altering the disintegration mode. The excellent simulation outcomes in this case indicate that the discrete element method effectively simulates the disintegration process of red stratum soft rock. The work thus enhances understanding of disintegration mechanisms and paves the way for further elucidation of the complex behaviours of soft rock.
doi_str_mv 10.1007/s10064-024-03999-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126804290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126804290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-f14c0fcd4964149f606a364b353d9662d5e270e5dd66b8d8d2632ea7337809903</originalsourceid><addsrcrecordid>eNp9kctOAyEUhidGE2v1BVyRuB7lMsMM7kzjLWnipq4JhUOlzqUCE9uX8VmlHaM7F8AB_u-ck_Nn2SXB1wTj6iaknRc5pmkxIUS-PcompGBlLkpWHf_GVJxmZyGsMSZlTckk-1q8AQJrQUfUW6QbtUPhE5rGdSvUd0h7pd_RCjrwKrr04DrkwaAQ031oUehtRL5PGjP4PfOpIvjcdWbQSWZccF2E1QjfIoVaFb3b5ksVxm_tIaYOGmihiyi4dmjGQiEOZneenVjVBLj4OafZ68P9YvaUz18en2d381xTjGNuSaGx1aYQvCCFsBxzxXixZCUzgnNqSqAVhtIYzpe1qQ3ljIKqGKtqLARm0-xqzLvx_ccAIcp1P_gulZSMUF7jgh5UdFRp34fgwcqNd63yO0mw3PsgRx9k8kEefJDbBLERCpv9gMD_pf6H-gZJAY6R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126804290</pqid></control><display><type>article</type><title>The effect of clay swelling on crack generation in red stratum soft rock during water-induced disintegration: a matrix-based discrete element simulation study</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Shiqi ; Yang, Zhongping ; Gao, Yuhao ; Liu, Xinrong ; Jin, Xiaoguang</creator><creatorcontrib>Li, Shiqi ; Yang, Zhongping ; Gao, Yuhao ; Liu, Xinrong ; Jin, Xiaoguang</creatorcontrib><description>Red stratum soft rock, which is prevalent in the deep backfill regions of southwest China, exhibits water-induced disintegration characteristics that significantly impact the bearing capacity and deformation behaviours of the foundation. To further examine its damage evolution after encountering water, a numerical simulation study was conducted utilising the particle discrete element method, based on immersion testing. The water-induced disintegration of soft rock is characterised by the expansion of clay mineral particles and a reduction in breaking force and residual strength coefficient. The findings indicate that the disintegration of red stratum soft rock can be categorised into three stages: Surface Erosion, Crack Development, and Crack Penetration. Natural cracks enhances permeability, while any increase in clay mineral content heightens hydration sensitivity. These factors decrease the slaking durability index, exacerbating failure and potentially altering the disintegration mode. The excellent simulation outcomes in this case indicate that the discrete element method effectively simulates the disintegration process of red stratum soft rock. The work thus enhances understanding of disintegration mechanisms and paves the way for further elucidation of the complex behaviours of soft rock.</description><identifier>ISSN: 1435-9529</identifier><identifier>EISSN: 1435-9537</identifier><identifier>DOI: 10.1007/s10064-024-03999-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bearing capacity ; Clay ; Clay minerals ; Composite materials ; Crack sensitivity ; Cracks ; Deformation ; Deformation effects ; Discrete element method ; Disintegration ; Earth and Environmental Science ; Earth Sciences ; Fault lines ; Foundations ; Geoecology/Natural Processes ; Geoengineering ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydration ; Hydraulics ; Mathematical models ; Mineral particles ; Minerals ; Nature Conservation ; Numerical simulations ; Original Paper ; Permeability ; Residual strength ; Rock ; Rocks ; Sediments ; Simulation ; Slaking ; Strata ; Stratigraphy ; Water ; Water damage</subject><ispartof>Bulletin of engineering geology and the environment, 2024-12, Vol.83 (12), p.489, Article 489</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-f14c0fcd4964149f606a364b353d9662d5e270e5dd66b8d8d2632ea7337809903</cites><orcidid>0000-0002-2919-1395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10064-024-03999-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10064-024-03999-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Shiqi</creatorcontrib><creatorcontrib>Yang, Zhongping</creatorcontrib><creatorcontrib>Gao, Yuhao</creatorcontrib><creatorcontrib>Liu, Xinrong</creatorcontrib><creatorcontrib>Jin, Xiaoguang</creatorcontrib><title>The effect of clay swelling on crack generation in red stratum soft rock during water-induced disintegration: a matrix-based discrete element simulation study</title><title>Bulletin of engineering geology and the environment</title><addtitle>Bull Eng Geol Environ</addtitle><description>Red stratum soft rock, which is prevalent in the deep backfill regions of southwest China, exhibits water-induced disintegration characteristics that significantly impact the bearing capacity and deformation behaviours of the foundation. To further examine its damage evolution after encountering water, a numerical simulation study was conducted utilising the particle discrete element method, based on immersion testing. The water-induced disintegration of soft rock is characterised by the expansion of clay mineral particles and a reduction in breaking force and residual strength coefficient. The findings indicate that the disintegration of red stratum soft rock can be categorised into three stages: Surface Erosion, Crack Development, and Crack Penetration. Natural cracks enhances permeability, while any increase in clay mineral content heightens hydration sensitivity. These factors decrease the slaking durability index, exacerbating failure and potentially altering the disintegration mode. The excellent simulation outcomes in this case indicate that the discrete element method effectively simulates the disintegration process of red stratum soft rock. The work thus enhances understanding of disintegration mechanisms and paves the way for further elucidation of the complex behaviours of soft rock.</description><subject>Bearing capacity</subject><subject>Clay</subject><subject>Clay minerals</subject><subject>Composite materials</subject><subject>Crack sensitivity</subject><subject>Cracks</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Discrete element method</subject><subject>Disintegration</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fault lines</subject><subject>Foundations</subject><subject>Geoecology/Natural Processes</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydration</subject><subject>Hydraulics</subject><subject>Mathematical models</subject><subject>Mineral particles</subject><subject>Minerals</subject><subject>Nature Conservation</subject><subject>Numerical simulations</subject><subject>Original Paper</subject><subject>Permeability</subject><subject>Residual strength</subject><subject>Rock</subject><subject>Rocks</subject><subject>Sediments</subject><subject>Simulation</subject><subject>Slaking</subject><subject>Strata</subject><subject>Stratigraphy</subject><subject>Water</subject><subject>Water damage</subject><issn>1435-9529</issn><issn>1435-9537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctOAyEUhidGE2v1BVyRuB7lMsMM7kzjLWnipq4JhUOlzqUCE9uX8VmlHaM7F8AB_u-ck_Nn2SXB1wTj6iaknRc5pmkxIUS-PcompGBlLkpWHf_GVJxmZyGsMSZlTckk-1q8AQJrQUfUW6QbtUPhE5rGdSvUd0h7pd_RCjrwKrr04DrkwaAQ031oUehtRL5PGjP4PfOpIvjcdWbQSWZccF2E1QjfIoVaFb3b5ksVxm_tIaYOGmihiyi4dmjGQiEOZneenVjVBLj4OafZ68P9YvaUz18en2d381xTjGNuSaGx1aYQvCCFsBxzxXixZCUzgnNqSqAVhtIYzpe1qQ3ljIKqGKtqLARm0-xqzLvx_ccAIcp1P_gulZSMUF7jgh5UdFRp34fgwcqNd63yO0mw3PsgRx9k8kEefJDbBLERCpv9gMD_pf6H-gZJAY6R</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Li, Shiqi</creator><creator>Yang, Zhongping</creator><creator>Gao, Yuhao</creator><creator>Liu, Xinrong</creator><creator>Jin, Xiaoguang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2919-1395</orcidid></search><sort><creationdate>20241201</creationdate><title>The effect of clay swelling on crack generation in red stratum soft rock during water-induced disintegration: a matrix-based discrete element simulation study</title><author>Li, Shiqi ; Yang, Zhongping ; Gao, Yuhao ; Liu, Xinrong ; Jin, Xiaoguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-f14c0fcd4964149f606a364b353d9662d5e270e5dd66b8d8d2632ea7337809903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bearing capacity</topic><topic>Clay</topic><topic>Clay minerals</topic><topic>Composite materials</topic><topic>Crack sensitivity</topic><topic>Cracks</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Discrete element method</topic><topic>Disintegration</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fault lines</topic><topic>Foundations</topic><topic>Geoecology/Natural Processes</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydration</topic><topic>Hydraulics</topic><topic>Mathematical models</topic><topic>Mineral particles</topic><topic>Minerals</topic><topic>Nature Conservation</topic><topic>Numerical simulations</topic><topic>Original Paper</topic><topic>Permeability</topic><topic>Residual strength</topic><topic>Rock</topic><topic>Rocks</topic><topic>Sediments</topic><topic>Simulation</topic><topic>Slaking</topic><topic>Strata</topic><topic>Stratigraphy</topic><topic>Water</topic><topic>Water damage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shiqi</creatorcontrib><creatorcontrib>Yang, Zhongping</creatorcontrib><creatorcontrib>Gao, Yuhao</creatorcontrib><creatorcontrib>Liu, Xinrong</creatorcontrib><creatorcontrib>Jin, Xiaoguang</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Bulletin of engineering geology and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shiqi</au><au>Yang, Zhongping</au><au>Gao, Yuhao</au><au>Liu, Xinrong</au><au>Jin, Xiaoguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of clay swelling on crack generation in red stratum soft rock during water-induced disintegration: a matrix-based discrete element simulation study</atitle><jtitle>Bulletin of engineering geology and the environment</jtitle><stitle>Bull Eng Geol Environ</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>83</volume><issue>12</issue><spage>489</spage><pages>489-</pages><artnum>489</artnum><issn>1435-9529</issn><eissn>1435-9537</eissn><abstract>Red stratum soft rock, which is prevalent in the deep backfill regions of southwest China, exhibits water-induced disintegration characteristics that significantly impact the bearing capacity and deformation behaviours of the foundation. To further examine its damage evolution after encountering water, a numerical simulation study was conducted utilising the particle discrete element method, based on immersion testing. The water-induced disintegration of soft rock is characterised by the expansion of clay mineral particles and a reduction in breaking force and residual strength coefficient. The findings indicate that the disintegration of red stratum soft rock can be categorised into three stages: Surface Erosion, Crack Development, and Crack Penetration. Natural cracks enhances permeability, while any increase in clay mineral content heightens hydration sensitivity. These factors decrease the slaking durability index, exacerbating failure and potentially altering the disintegration mode. The excellent simulation outcomes in this case indicate that the discrete element method effectively simulates the disintegration process of red stratum soft rock. The work thus enhances understanding of disintegration mechanisms and paves the way for further elucidation of the complex behaviours of soft rock.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10064-024-03999-x</doi><orcidid>https://orcid.org/0000-0002-2919-1395</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1435-9529
ispartof Bulletin of engineering geology and the environment, 2024-12, Vol.83 (12), p.489, Article 489
issn 1435-9529
1435-9537
language eng
recordid cdi_proquest_journals_3126804290
source SpringerLink Journals - AutoHoldings
subjects Bearing capacity
Clay
Clay minerals
Composite materials
Crack sensitivity
Cracks
Deformation
Deformation effects
Discrete element method
Disintegration
Earth and Environmental Science
Earth Sciences
Fault lines
Foundations
Geoecology/Natural Processes
Geoengineering
Geotechnical Engineering & Applied Earth Sciences
Hydration
Hydraulics
Mathematical models
Mineral particles
Minerals
Nature Conservation
Numerical simulations
Original Paper
Permeability
Residual strength
Rock
Rocks
Sediments
Simulation
Slaking
Strata
Stratigraphy
Water
Water damage
title The effect of clay swelling on crack generation in red stratum soft rock during water-induced disintegration: a matrix-based discrete element simulation study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20clay%20swelling%20on%20crack%20generation%20in%20red%20stratum%20soft%20rock%20during%20water-induced%20disintegration:%20a%20matrix-based%20discrete%20element%20simulation%20study&rft.jtitle=Bulletin%20of%20engineering%20geology%20and%20the%20environment&rft.au=Li,%20Shiqi&rft.date=2024-12-01&rft.volume=83&rft.issue=12&rft.spage=489&rft.pages=489-&rft.artnum=489&rft.issn=1435-9529&rft.eissn=1435-9537&rft_id=info:doi/10.1007/s10064-024-03999-x&rft_dat=%3Cproquest_cross%3E3126804290%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126804290&rft_id=info:pmid/&rfr_iscdi=true