The effect of clay swelling on crack generation in red stratum soft rock during water-induced disintegration: a matrix-based discrete element simulation study
Red stratum soft rock, which is prevalent in the deep backfill regions of southwest China, exhibits water-induced disintegration characteristics that significantly impact the bearing capacity and deformation behaviours of the foundation. To further examine its damage evolution after encountering wat...
Gespeichert in:
Veröffentlicht in: | Bulletin of engineering geology and the environment 2024-12, Vol.83 (12), p.489, Article 489 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 489 |
container_title | Bulletin of engineering geology and the environment |
container_volume | 83 |
creator | Li, Shiqi Yang, Zhongping Gao, Yuhao Liu, Xinrong Jin, Xiaoguang |
description | Red stratum soft rock, which is prevalent in the deep backfill regions of southwest China, exhibits water-induced disintegration characteristics that significantly impact the bearing capacity and deformation behaviours of the foundation. To further examine its damage evolution after encountering water, a numerical simulation study was conducted utilising the particle discrete element method, based on immersion testing. The water-induced disintegration of soft rock is characterised by the expansion of clay mineral particles and a reduction in breaking force and residual strength coefficient. The findings indicate that the disintegration of red stratum soft rock can be categorised into three stages: Surface Erosion, Crack Development, and Crack Penetration. Natural cracks enhances permeability, while any increase in clay mineral content heightens hydration sensitivity. These factors decrease the slaking durability index, exacerbating failure and potentially altering the disintegration mode. The excellent simulation outcomes in this case indicate that the discrete element method effectively simulates the disintegration process of red stratum soft rock. The work thus enhances understanding of disintegration mechanisms and paves the way for further elucidation of the complex behaviours of soft rock. |
doi_str_mv | 10.1007/s10064-024-03999-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126804290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126804290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-f14c0fcd4964149f606a364b353d9662d5e270e5dd66b8d8d2632ea7337809903</originalsourceid><addsrcrecordid>eNp9kctOAyEUhidGE2v1BVyRuB7lMsMM7kzjLWnipq4JhUOlzqUCE9uX8VmlHaM7F8AB_u-ck_Nn2SXB1wTj6iaknRc5pmkxIUS-PcompGBlLkpWHf_GVJxmZyGsMSZlTckk-1q8AQJrQUfUW6QbtUPhE5rGdSvUd0h7pd_RCjrwKrr04DrkwaAQ031oUehtRL5PGjP4PfOpIvjcdWbQSWZccF2E1QjfIoVaFb3b5ksVxm_tIaYOGmihiyi4dmjGQiEOZneenVjVBLj4OafZ68P9YvaUz18en2d381xTjGNuSaGx1aYQvCCFsBxzxXixZCUzgnNqSqAVhtIYzpe1qQ3ljIKqGKtqLARm0-xqzLvx_ccAIcp1P_gulZSMUF7jgh5UdFRp34fgwcqNd63yO0mw3PsgRx9k8kEefJDbBLERCpv9gMD_pf6H-gZJAY6R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126804290</pqid></control><display><type>article</type><title>The effect of clay swelling on crack generation in red stratum soft rock during water-induced disintegration: a matrix-based discrete element simulation study</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Shiqi ; Yang, Zhongping ; Gao, Yuhao ; Liu, Xinrong ; Jin, Xiaoguang</creator><creatorcontrib>Li, Shiqi ; Yang, Zhongping ; Gao, Yuhao ; Liu, Xinrong ; Jin, Xiaoguang</creatorcontrib><description>Red stratum soft rock, which is prevalent in the deep backfill regions of southwest China, exhibits water-induced disintegration characteristics that significantly impact the bearing capacity and deformation behaviours of the foundation. To further examine its damage evolution after encountering water, a numerical simulation study was conducted utilising the particle discrete element method, based on immersion testing. The water-induced disintegration of soft rock is characterised by the expansion of clay mineral particles and a reduction in breaking force and residual strength coefficient. The findings indicate that the disintegration of red stratum soft rock can be categorised into three stages: Surface Erosion, Crack Development, and Crack Penetration. Natural cracks enhances permeability, while any increase in clay mineral content heightens hydration sensitivity. These factors decrease the slaking durability index, exacerbating failure and potentially altering the disintegration mode. The excellent simulation outcomes in this case indicate that the discrete element method effectively simulates the disintegration process of red stratum soft rock. The work thus enhances understanding of disintegration mechanisms and paves the way for further elucidation of the complex behaviours of soft rock.</description><identifier>ISSN: 1435-9529</identifier><identifier>EISSN: 1435-9537</identifier><identifier>DOI: 10.1007/s10064-024-03999-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bearing capacity ; Clay ; Clay minerals ; Composite materials ; Crack sensitivity ; Cracks ; Deformation ; Deformation effects ; Discrete element method ; Disintegration ; Earth and Environmental Science ; Earth Sciences ; Fault lines ; Foundations ; Geoecology/Natural Processes ; Geoengineering ; Geotechnical Engineering & Applied Earth Sciences ; Hydration ; Hydraulics ; Mathematical models ; Mineral particles ; Minerals ; Nature Conservation ; Numerical simulations ; Original Paper ; Permeability ; Residual strength ; Rock ; Rocks ; Sediments ; Simulation ; Slaking ; Strata ; Stratigraphy ; Water ; Water damage</subject><ispartof>Bulletin of engineering geology and the environment, 2024-12, Vol.83 (12), p.489, Article 489</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-f14c0fcd4964149f606a364b353d9662d5e270e5dd66b8d8d2632ea7337809903</cites><orcidid>0000-0002-2919-1395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10064-024-03999-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10064-024-03999-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Shiqi</creatorcontrib><creatorcontrib>Yang, Zhongping</creatorcontrib><creatorcontrib>Gao, Yuhao</creatorcontrib><creatorcontrib>Liu, Xinrong</creatorcontrib><creatorcontrib>Jin, Xiaoguang</creatorcontrib><title>The effect of clay swelling on crack generation in red stratum soft rock during water-induced disintegration: a matrix-based discrete element simulation study</title><title>Bulletin of engineering geology and the environment</title><addtitle>Bull Eng Geol Environ</addtitle><description>Red stratum soft rock, which is prevalent in the deep backfill regions of southwest China, exhibits water-induced disintegration characteristics that significantly impact the bearing capacity and deformation behaviours of the foundation. To further examine its damage evolution after encountering water, a numerical simulation study was conducted utilising the particle discrete element method, based on immersion testing. The water-induced disintegration of soft rock is characterised by the expansion of clay mineral particles and a reduction in breaking force and residual strength coefficient. The findings indicate that the disintegration of red stratum soft rock can be categorised into three stages: Surface Erosion, Crack Development, and Crack Penetration. Natural cracks enhances permeability, while any increase in clay mineral content heightens hydration sensitivity. These factors decrease the slaking durability index, exacerbating failure and potentially altering the disintegration mode. The excellent simulation outcomes in this case indicate that the discrete element method effectively simulates the disintegration process of red stratum soft rock. The work thus enhances understanding of disintegration mechanisms and paves the way for further elucidation of the complex behaviours of soft rock.</description><subject>Bearing capacity</subject><subject>Clay</subject><subject>Clay minerals</subject><subject>Composite materials</subject><subject>Crack sensitivity</subject><subject>Cracks</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Discrete element method</subject><subject>Disintegration</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fault lines</subject><subject>Foundations</subject><subject>Geoecology/Natural Processes</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydration</subject><subject>Hydraulics</subject><subject>Mathematical models</subject><subject>Mineral particles</subject><subject>Minerals</subject><subject>Nature Conservation</subject><subject>Numerical simulations</subject><subject>Original Paper</subject><subject>Permeability</subject><subject>Residual strength</subject><subject>Rock</subject><subject>Rocks</subject><subject>Sediments</subject><subject>Simulation</subject><subject>Slaking</subject><subject>Strata</subject><subject>Stratigraphy</subject><subject>Water</subject><subject>Water damage</subject><issn>1435-9529</issn><issn>1435-9537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctOAyEUhidGE2v1BVyRuB7lMsMM7kzjLWnipq4JhUOlzqUCE9uX8VmlHaM7F8AB_u-ck_Nn2SXB1wTj6iaknRc5pmkxIUS-PcompGBlLkpWHf_GVJxmZyGsMSZlTckk-1q8AQJrQUfUW6QbtUPhE5rGdSvUd0h7pd_RCjrwKrr04DrkwaAQ031oUehtRL5PGjP4PfOpIvjcdWbQSWZccF2E1QjfIoVaFb3b5ksVxm_tIaYOGmihiyi4dmjGQiEOZneenVjVBLj4OafZ68P9YvaUz18en2d381xTjGNuSaGx1aYQvCCFsBxzxXixZCUzgnNqSqAVhtIYzpe1qQ3ljIKqGKtqLARm0-xqzLvx_ccAIcp1P_gulZSMUF7jgh5UdFRp34fgwcqNd63yO0mw3PsgRx9k8kEefJDbBLERCpv9gMD_pf6H-gZJAY6R</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Li, Shiqi</creator><creator>Yang, Zhongping</creator><creator>Gao, Yuhao</creator><creator>Liu, Xinrong</creator><creator>Jin, Xiaoguang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2919-1395</orcidid></search><sort><creationdate>20241201</creationdate><title>The effect of clay swelling on crack generation in red stratum soft rock during water-induced disintegration: a matrix-based discrete element simulation study</title><author>Li, Shiqi ; Yang, Zhongping ; Gao, Yuhao ; Liu, Xinrong ; Jin, Xiaoguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-f14c0fcd4964149f606a364b353d9662d5e270e5dd66b8d8d2632ea7337809903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bearing capacity</topic><topic>Clay</topic><topic>Clay minerals</topic><topic>Composite materials</topic><topic>Crack sensitivity</topic><topic>Cracks</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Discrete element method</topic><topic>Disintegration</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fault lines</topic><topic>Foundations</topic><topic>Geoecology/Natural Processes</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydration</topic><topic>Hydraulics</topic><topic>Mathematical models</topic><topic>Mineral particles</topic><topic>Minerals</topic><topic>Nature Conservation</topic><topic>Numerical simulations</topic><topic>Original Paper</topic><topic>Permeability</topic><topic>Residual strength</topic><topic>Rock</topic><topic>Rocks</topic><topic>Sediments</topic><topic>Simulation</topic><topic>Slaking</topic><topic>Strata</topic><topic>Stratigraphy</topic><topic>Water</topic><topic>Water damage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shiqi</creatorcontrib><creatorcontrib>Yang, Zhongping</creatorcontrib><creatorcontrib>Gao, Yuhao</creatorcontrib><creatorcontrib>Liu, Xinrong</creatorcontrib><creatorcontrib>Jin, Xiaoguang</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Bulletin of engineering geology and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shiqi</au><au>Yang, Zhongping</au><au>Gao, Yuhao</au><au>Liu, Xinrong</au><au>Jin, Xiaoguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of clay swelling on crack generation in red stratum soft rock during water-induced disintegration: a matrix-based discrete element simulation study</atitle><jtitle>Bulletin of engineering geology and the environment</jtitle><stitle>Bull Eng Geol Environ</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>83</volume><issue>12</issue><spage>489</spage><pages>489-</pages><artnum>489</artnum><issn>1435-9529</issn><eissn>1435-9537</eissn><abstract>Red stratum soft rock, which is prevalent in the deep backfill regions of southwest China, exhibits water-induced disintegration characteristics that significantly impact the bearing capacity and deformation behaviours of the foundation. To further examine its damage evolution after encountering water, a numerical simulation study was conducted utilising the particle discrete element method, based on immersion testing. The water-induced disintegration of soft rock is characterised by the expansion of clay mineral particles and a reduction in breaking force and residual strength coefficient. The findings indicate that the disintegration of red stratum soft rock can be categorised into three stages: Surface Erosion, Crack Development, and Crack Penetration. Natural cracks enhances permeability, while any increase in clay mineral content heightens hydration sensitivity. These factors decrease the slaking durability index, exacerbating failure and potentially altering the disintegration mode. The excellent simulation outcomes in this case indicate that the discrete element method effectively simulates the disintegration process of red stratum soft rock. The work thus enhances understanding of disintegration mechanisms and paves the way for further elucidation of the complex behaviours of soft rock.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10064-024-03999-x</doi><orcidid>https://orcid.org/0000-0002-2919-1395</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-9529 |
ispartof | Bulletin of engineering geology and the environment, 2024-12, Vol.83 (12), p.489, Article 489 |
issn | 1435-9529 1435-9537 |
language | eng |
recordid | cdi_proquest_journals_3126804290 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bearing capacity Clay Clay minerals Composite materials Crack sensitivity Cracks Deformation Deformation effects Discrete element method Disintegration Earth and Environmental Science Earth Sciences Fault lines Foundations Geoecology/Natural Processes Geoengineering Geotechnical Engineering & Applied Earth Sciences Hydration Hydraulics Mathematical models Mineral particles Minerals Nature Conservation Numerical simulations Original Paper Permeability Residual strength Rock Rocks Sediments Simulation Slaking Strata Stratigraphy Water Water damage |
title | The effect of clay swelling on crack generation in red stratum soft rock during water-induced disintegration: a matrix-based discrete element simulation study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20clay%20swelling%20on%20crack%20generation%20in%20red%20stratum%20soft%20rock%20during%20water-induced%20disintegration:%20a%20matrix-based%20discrete%20element%20simulation%20study&rft.jtitle=Bulletin%20of%20engineering%20geology%20and%20the%20environment&rft.au=Li,%20Shiqi&rft.date=2024-12-01&rft.volume=83&rft.issue=12&rft.spage=489&rft.pages=489-&rft.artnum=489&rft.issn=1435-9529&rft.eissn=1435-9537&rft_id=info:doi/10.1007/s10064-024-03999-x&rft_dat=%3Cproquest_cross%3E3126804290%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126804290&rft_id=info:pmid/&rfr_iscdi=true |