Almansi-type decomposition and Fueter-Sce theorem for generalized partial-slice regular functions

Very recently, the concept of generalized partial-slice monogenic (or regular) functions has been introduced to unify the theory of monogenic functions and of slice monogenic functions over Clifford algebras. Inspired by the work of A. Perotti, in this paper we provide two analogous versions of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Huo, Qinghai, Pan, Lian, Si, Jiajia, Xu, Zhenghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Huo, Qinghai
Pan, Lian
Si, Jiajia
Xu, Zhenghua
description Very recently, the concept of generalized partial-slice monogenic (or regular) functions has been introduced to unify the theory of monogenic functions and of slice monogenic functions over Clifford algebras. Inspired by the work of A. Perotti, in this paper we provide two analogous versions of the Almansi decomposition in this new setting. Additionally, two enhancements of the Fueter-Sce theorem have been obtained for generalized partial-slice regular functions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3126804273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126804273</sourcerecordid><originalsourceid>FETCH-proquest_journals_31268042733</originalsourceid><addsrcrecordid>eNqNjL0KwjAYAIMgWLTvEHAOtEn_VhGLu-4ltF9rSprEL8mgT28FH8DphjtuQxIuRM6agvMdSb2fsyzjVc3LUiREnvQijVcsvBzQAXq7OOtVUNZQaQbaRgiA7NYDDQ-wCAsdLdIJDKDU6g0DdRKDkpp5rdYKYYpaIh2j6b8XfyDbUWoP6Y97cmwv9_OVObTPCD50s41oVtWJnFdNVvBaiP-qD6vRRh8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126804273</pqid></control><display><type>article</type><title>Almansi-type decomposition and Fueter-Sce theorem for generalized partial-slice regular functions</title><source>Free E- Journals</source><creator>Huo, Qinghai ; Pan, Lian ; Si, Jiajia ; Xu, Zhenghua</creator><creatorcontrib>Huo, Qinghai ; Pan, Lian ; Si, Jiajia ; Xu, Zhenghua</creatorcontrib><description>Very recently, the concept of generalized partial-slice monogenic (or regular) functions has been introduced to unify the theory of monogenic functions and of slice monogenic functions over Clifford algebras. Inspired by the work of A. Perotti, in this paper we provide two analogous versions of the Almansi decomposition in this new setting. Additionally, two enhancements of the Fueter-Sce theorem have been obtained for generalized partial-slice regular functions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decomposition ; Theorems</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Huo, Qinghai</creatorcontrib><creatorcontrib>Pan, Lian</creatorcontrib><creatorcontrib>Si, Jiajia</creatorcontrib><creatorcontrib>Xu, Zhenghua</creatorcontrib><title>Almansi-type decomposition and Fueter-Sce theorem for generalized partial-slice regular functions</title><title>arXiv.org</title><description>Very recently, the concept of generalized partial-slice monogenic (or regular) functions has been introduced to unify the theory of monogenic functions and of slice monogenic functions over Clifford algebras. Inspired by the work of A. Perotti, in this paper we provide two analogous versions of the Almansi decomposition in this new setting. Additionally, two enhancements of the Fueter-Sce theorem have been obtained for generalized partial-slice regular functions.</description><subject>Decomposition</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAYAIMgWLTvEHAOtEn_VhGLu-4ltF9rSprEL8mgT28FH8DphjtuQxIuRM6agvMdSb2fsyzjVc3LUiREnvQijVcsvBzQAXq7OOtVUNZQaQbaRgiA7NYDDQ-wCAsdLdIJDKDU6g0DdRKDkpp5rdYKYYpaIh2j6b8XfyDbUWoP6Y97cmwv9_OVObTPCD50s41oVtWJnFdNVvBaiP-qD6vRRh8</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Huo, Qinghai</creator><creator>Pan, Lian</creator><creator>Si, Jiajia</creator><creator>Xu, Zhenghua</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241118</creationdate><title>Almansi-type decomposition and Fueter-Sce theorem for generalized partial-slice regular functions</title><author>Huo, Qinghai ; Pan, Lian ; Si, Jiajia ; Xu, Zhenghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31268042733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Decomposition</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Huo, Qinghai</creatorcontrib><creatorcontrib>Pan, Lian</creatorcontrib><creatorcontrib>Si, Jiajia</creatorcontrib><creatorcontrib>Xu, Zhenghua</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huo, Qinghai</au><au>Pan, Lian</au><au>Si, Jiajia</au><au>Xu, Zhenghua</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Almansi-type decomposition and Fueter-Sce theorem for generalized partial-slice regular functions</atitle><jtitle>arXiv.org</jtitle><date>2024-11-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Very recently, the concept of generalized partial-slice monogenic (or regular) functions has been introduced to unify the theory of monogenic functions and of slice monogenic functions over Clifford algebras. Inspired by the work of A. Perotti, in this paper we provide two analogous versions of the Almansi decomposition in this new setting. Additionally, two enhancements of the Fueter-Sce theorem have been obtained for generalized partial-slice regular functions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3126804273
source Free E- Journals
subjects Decomposition
Theorems
title Almansi-type decomposition and Fueter-Sce theorem for generalized partial-slice regular functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Almansi-type%20decomposition%20and%20Fueter-Sce%20theorem%20for%20generalized%20partial-slice%20regular%20functions&rft.jtitle=arXiv.org&rft.au=Huo,%20Qinghai&rft.date=2024-11-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3126804273%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126804273&rft_id=info:pmid/&rfr_iscdi=true