Bayesian RG Flow in Neural Network Field Theories

The Neural Network Field Theory correspondence (NNFT) is a mapping from neural network (NN) architectures into the space of statistical field theories (SFTs). The Bayesian renormalization group (BRG) is an information-theoretic coarse graining scheme that generalizes the principles of the exact reno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Howard, Jessica N, Klinger, Marc S, Maiti, Anindita, Stapleton, Alexander G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Howard, Jessica N
Klinger, Marc S
Maiti, Anindita
Stapleton, Alexander G
description The Neural Network Field Theory correspondence (NNFT) is a mapping from neural network (NN) architectures into the space of statistical field theories (SFTs). The Bayesian renormalization group (BRG) is an information-theoretic coarse graining scheme that generalizes the principles of the exact renormalization group (ERG) to arbitrarily parameterized probability distributions, including those of NNs. In BRG, coarse graining is performed in parameter space with respect to an information-theoretic distinguishability scale set by the Fisher information metric. In this paper, we unify NNFT and BRG to form a powerful new framework for exploring the space of NNs and SFTs, which we coin BRG-NNFT. With BRG-NNFT, NN training dynamics can be interpreted as inducing a flow in the space of SFTs from the information-theoretic `IR' \(\rightarrow\) `UV'. Conversely, applying an information-shell coarse graining to the trained network's parameters induces a flow in the space of SFTs from the information-theoretic `UV' \(\rightarrow\) `IR'. When the information-theoretic cutoff scale coincides with a standard momentum scale, BRG is equivalent to ERG. We demonstrate the BRG-NNFT correspondence on two analytically tractable examples. First, we construct BRG flows for trained, infinite-width NNs, of arbitrary depth, with generic activation functions. As a special case, we then restrict to architectures with a single infinitely-wide layer, scalar outputs, and generalized cos-net activations. In this case, we show that BRG coarse-graining corresponds exactly to the momentum-shell ERG flow of a free scalar SFT. Our analytic results are corroborated by a numerical experiment in which an ensemble of asymptotically wide NNs are trained and subsequently renormalized using an information-shell BRG scheme.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3126804242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126804242</sourcerecordid><originalsourceid>FETCH-proquest_journals_31268042423</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdEqsTC3OTMxTCHJXcMvJL1fIzFPwSy0tSswBUiXl-UXZCm6ZqTkpCiEZqflFmanFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2xoZGZhYGJkYmRMnCoAMkUygg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126804242</pqid></control><display><type>article</type><title>Bayesian RG Flow in Neural Network Field Theories</title><source>Free E- Journals</source><creator>Howard, Jessica N ; Klinger, Marc S ; Maiti, Anindita ; Stapleton, Alexander G</creator><creatorcontrib>Howard, Jessica N ; Klinger, Marc S ; Maiti, Anindita ; Stapleton, Alexander G</creatorcontrib><description>The Neural Network Field Theory correspondence (NNFT) is a mapping from neural network (NN) architectures into the space of statistical field theories (SFTs). The Bayesian renormalization group (BRG) is an information-theoretic coarse graining scheme that generalizes the principles of the exact renormalization group (ERG) to arbitrarily parameterized probability distributions, including those of NNs. In BRG, coarse graining is performed in parameter space with respect to an information-theoretic distinguishability scale set by the Fisher information metric. In this paper, we unify NNFT and BRG to form a powerful new framework for exploring the space of NNs and SFTs, which we coin BRG-NNFT. With BRG-NNFT, NN training dynamics can be interpreted as inducing a flow in the space of SFTs from the information-theoretic `IR' \(\rightarrow\) `UV'. Conversely, applying an information-shell coarse graining to the trained network's parameters induces a flow in the space of SFTs from the information-theoretic `UV' \(\rightarrow\) `IR'. When the information-theoretic cutoff scale coincides with a standard momentum scale, BRG is equivalent to ERG. We demonstrate the BRG-NNFT correspondence on two analytically tractable examples. First, we construct BRG flows for trained, infinite-width NNs, of arbitrary depth, with generic activation functions. As a special case, we then restrict to architectures with a single infinitely-wide layer, scalar outputs, and generalized cos-net activations. In this case, we show that BRG coarse-graining corresponds exactly to the momentum-shell ERG flow of a free scalar SFT. Our analytic results are corroborated by a numerical experiment in which an ensemble of asymptotically wide NNs are trained and subsequently renormalized using an information-shell BRG scheme.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Field theory ; Fisher information ; Flow mapping ; Granulation ; Information theory ; Momentum ; Neural networks ; Parameters ; Statistical analysis</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Howard, Jessica N</creatorcontrib><creatorcontrib>Klinger, Marc S</creatorcontrib><creatorcontrib>Maiti, Anindita</creatorcontrib><creatorcontrib>Stapleton, Alexander G</creatorcontrib><title>Bayesian RG Flow in Neural Network Field Theories</title><title>arXiv.org</title><description>The Neural Network Field Theory correspondence (NNFT) is a mapping from neural network (NN) architectures into the space of statistical field theories (SFTs). The Bayesian renormalization group (BRG) is an information-theoretic coarse graining scheme that generalizes the principles of the exact renormalization group (ERG) to arbitrarily parameterized probability distributions, including those of NNs. In BRG, coarse graining is performed in parameter space with respect to an information-theoretic distinguishability scale set by the Fisher information metric. In this paper, we unify NNFT and BRG to form a powerful new framework for exploring the space of NNs and SFTs, which we coin BRG-NNFT. With BRG-NNFT, NN training dynamics can be interpreted as inducing a flow in the space of SFTs from the information-theoretic `IR' \(\rightarrow\) `UV'. Conversely, applying an information-shell coarse graining to the trained network's parameters induces a flow in the space of SFTs from the information-theoretic `UV' \(\rightarrow\) `IR'. When the information-theoretic cutoff scale coincides with a standard momentum scale, BRG is equivalent to ERG. We demonstrate the BRG-NNFT correspondence on two analytically tractable examples. First, we construct BRG flows for trained, infinite-width NNs, of arbitrary depth, with generic activation functions. As a special case, we then restrict to architectures with a single infinitely-wide layer, scalar outputs, and generalized cos-net activations. In this case, we show that BRG coarse-graining corresponds exactly to the momentum-shell ERG flow of a free scalar SFT. Our analytic results are corroborated by a numerical experiment in which an ensemble of asymptotically wide NNs are trained and subsequently renormalized using an information-shell BRG scheme.</description><subject>Bayesian analysis</subject><subject>Field theory</subject><subject>Fisher information</subject><subject>Flow mapping</subject><subject>Granulation</subject><subject>Information theory</subject><subject>Momentum</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdEqsTC3OTMxTCHJXcMvJL1fIzFPwSy0tSswBUiXl-UXZCm6ZqTkpCiEZqflFmanFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2xoZGZhYGJkYmRMnCoAMkUygg</recordid><startdate>20241108</startdate><enddate>20241108</enddate><creator>Howard, Jessica N</creator><creator>Klinger, Marc S</creator><creator>Maiti, Anindita</creator><creator>Stapleton, Alexander G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241108</creationdate><title>Bayesian RG Flow in Neural Network Field Theories</title><author>Howard, Jessica N ; Klinger, Marc S ; Maiti, Anindita ; Stapleton, Alexander G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31268042423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian analysis</topic><topic>Field theory</topic><topic>Fisher information</topic><topic>Flow mapping</topic><topic>Granulation</topic><topic>Information theory</topic><topic>Momentum</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Howard, Jessica N</creatorcontrib><creatorcontrib>Klinger, Marc S</creatorcontrib><creatorcontrib>Maiti, Anindita</creatorcontrib><creatorcontrib>Stapleton, Alexander G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howard, Jessica N</au><au>Klinger, Marc S</au><au>Maiti, Anindita</au><au>Stapleton, Alexander G</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bayesian RG Flow in Neural Network Field Theories</atitle><jtitle>arXiv.org</jtitle><date>2024-11-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The Neural Network Field Theory correspondence (NNFT) is a mapping from neural network (NN) architectures into the space of statistical field theories (SFTs). The Bayesian renormalization group (BRG) is an information-theoretic coarse graining scheme that generalizes the principles of the exact renormalization group (ERG) to arbitrarily parameterized probability distributions, including those of NNs. In BRG, coarse graining is performed in parameter space with respect to an information-theoretic distinguishability scale set by the Fisher information metric. In this paper, we unify NNFT and BRG to form a powerful new framework for exploring the space of NNs and SFTs, which we coin BRG-NNFT. With BRG-NNFT, NN training dynamics can be interpreted as inducing a flow in the space of SFTs from the information-theoretic `IR' \(\rightarrow\) `UV'. Conversely, applying an information-shell coarse graining to the trained network's parameters induces a flow in the space of SFTs from the information-theoretic `UV' \(\rightarrow\) `IR'. When the information-theoretic cutoff scale coincides with a standard momentum scale, BRG is equivalent to ERG. We demonstrate the BRG-NNFT correspondence on two analytically tractable examples. First, we construct BRG flows for trained, infinite-width NNs, of arbitrary depth, with generic activation functions. As a special case, we then restrict to architectures with a single infinitely-wide layer, scalar outputs, and generalized cos-net activations. In this case, we show that BRG coarse-graining corresponds exactly to the momentum-shell ERG flow of a free scalar SFT. Our analytic results are corroborated by a numerical experiment in which an ensemble of asymptotically wide NNs are trained and subsequently renormalized using an information-shell BRG scheme.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3126804242
source Free E- Journals
subjects Bayesian analysis
Field theory
Fisher information
Flow mapping
Granulation
Information theory
Momentum
Neural networks
Parameters
Statistical analysis
title Bayesian RG Flow in Neural Network Field Theories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bayesian%20RG%20Flow%20in%20Neural%20Network%20Field%20Theories&rft.jtitle=arXiv.org&rft.au=Howard,%20Jessica%20N&rft.date=2024-11-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3126804242%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126804242&rft_id=info:pmid/&rfr_iscdi=true