Novel Mn2 Anode with Cationic and Anionic Redox Chemistry for Li‐Ion Batteries

α‐Mn[N(CN)2]2 (Pnnm) with divalent Mn2+ being octahedrally coordinated by six [N(CN)2]− dicyanamide (dca‒) complex anions is known since 1999. A novel β polymorph is now prepared and its structure characterized via powder X‐ray diffraction. β‐Mn[N(CN)2]2 also crystallizes orthorhombically (Cmcm) but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-11, Vol.34 (46)
Hauptverfasser: Qiao, Xianji, Cai, Guohong, Müller, Peter C, Wang, Liguang, Cai, Guanqun, Liu, Tiefeng, Qu, Shangqing, Yin, Yufeng, Li, Guobao, Corkett, Alex J, Dronskowski, Richard, Lu, Jun, Sun, Junliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 46
container_start_page
container_title Advanced functional materials
container_volume 34
creator Qiao, Xianji
Cai, Guohong
Müller, Peter C
Wang, Liguang
Cai, Guanqun
Liu, Tiefeng
Qu, Shangqing
Yin, Yufeng
Li, Guobao
Corkett, Alex J
Dronskowski, Richard
Lu, Jun
Sun, Junliang
description α‐Mn[N(CN)2]2 (Pnnm) with divalent Mn2+ being octahedrally coordinated by six [N(CN)2]− dicyanamide (dca‒) complex anions is known since 1999. A novel β polymorph is now prepared and its structure characterized via powder X‐ray diffraction. β‐Mn[N(CN)2]2 also crystallizes orthorhombically (Cmcm) but with Mn2+ tetrahedrally coordinated to four [N(CN)2]− anions. Property‐wise, α‐Mn[N(CN)2]2 can be efficiently used as a negative electrode material for lithium‐ion batteries, maintaining a large reversible capacity of more than 600 mAh g−1 for 250 cycles tested at 0.5 C, comparing favorably to well‐established negative electrode references such as graphite (≈372 mAh g−1). The electrochemical lithiation/delithiation mechanism of α‐Mn[N(CN)2]2 is investigated using advanced characterization techniques and theoretical calculations. Upon lithiation, α‐Mn[N(CN)2]2 undergoes a reversible conversion reaction, forming LiN(CN)2 and metallic manganese, which are transformed back into α‐Mn[N(CN)2]2 upon delithiation. Further, there is evidence for reversible and additional charge/discharge processes on the dca‒ anion throughout the entire discharge/charge process in α‐Mn[N(CN)2]2, reflecting an anionic charge compensation. Moreover, density‐functional (DFT) and chemical‐bonding theory are employed to investigate the detailed anodic behavior of α‐Mn[N(CN)2]2 via conversion reaction during (de‐)lithiation processes. This mechanism, evidenced for the first time in transition metal dicyanamides, is likely behind its outstanding electrochemical properties.
doi_str_mv 10.1002/adfm.202407729
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3126696127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126696127</sourcerecordid><originalsourceid>FETCH-proquest_journals_31266961273</originalsourceid><addsrcrecordid>eNqNissOATEYRhshMS5b6z-xRtuR1iyZEBJExMJOGtOJykxLW7edR_CMnoSEWFudk_N9CDUIbhOMaUckad6mmHYx5zQqoIAwwlohpr3iz8m6jCrO7TEmnIfdAC3m5iwzmGkKfW0SCRfldxALr4xWWxA6efePL2VirhDvZK6ctzdIjYWpet4fE6NhILyXVklXQ6VUZE7Wv6yi5mi4isetgzXHk3R-szcnq9_TJiSUsYgRysP_Xi-uiUU3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126696127</pqid></control><display><type>article</type><title>Novel Mn2 Anode with Cationic and Anionic Redox Chemistry for Li‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qiao, Xianji ; Cai, Guohong ; Müller, Peter C ; Wang, Liguang ; Cai, Guanqun ; Liu, Tiefeng ; Qu, Shangqing ; Yin, Yufeng ; Li, Guobao ; Corkett, Alex J ; Dronskowski, Richard ; Lu, Jun ; Sun, Junliang</creator><creatorcontrib>Qiao, Xianji ; Cai, Guohong ; Müller, Peter C ; Wang, Liguang ; Cai, Guanqun ; Liu, Tiefeng ; Qu, Shangqing ; Yin, Yufeng ; Li, Guobao ; Corkett, Alex J ; Dronskowski, Richard ; Lu, Jun ; Sun, Junliang</creatorcontrib><description>α‐Mn[N(CN)2]2 (Pnnm) with divalent Mn2+ being octahedrally coordinated by six [N(CN)2]− dicyanamide (dca‒) complex anions is known since 1999. A novel β polymorph is now prepared and its structure characterized via powder X‐ray diffraction. β‐Mn[N(CN)2]2 also crystallizes orthorhombically (Cmcm) but with Mn2+ tetrahedrally coordinated to four [N(CN)2]− anions. Property‐wise, α‐Mn[N(CN)2]2 can be efficiently used as a negative electrode material for lithium‐ion batteries, maintaining a large reversible capacity of more than 600 mAh g−1 for 250 cycles tested at 0.5 C, comparing favorably to well‐established negative electrode references such as graphite (≈372 mAh g−1). The electrochemical lithiation/delithiation mechanism of α‐Mn[N(CN)2]2 is investigated using advanced characterization techniques and theoretical calculations. Upon lithiation, α‐Mn[N(CN)2]2 undergoes a reversible conversion reaction, forming LiN(CN)2 and metallic manganese, which are transformed back into α‐Mn[N(CN)2]2 upon delithiation. Further, there is evidence for reversible and additional charge/discharge processes on the dca‒ anion throughout the entire discharge/charge process in α‐Mn[N(CN)2]2, reflecting an anionic charge compensation. Moreover, density‐functional (DFT) and chemical‐bonding theory are employed to investigate the detailed anodic behavior of α‐Mn[N(CN)2]2 via conversion reaction during (de‐)lithiation processes. This mechanism, evidenced for the first time in transition metal dicyanamides, is likely behind its outstanding electrochemical properties.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202407729</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anions ; Chemical bonds ; Discharge ; Electrochemical analysis ; Electrode materials ; Electrodes ; Lithium-ion batteries ; Manganese ; Transition metals</subject><ispartof>Advanced functional materials, 2024-11, Vol.34 (46)</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Qiao, Xianji</creatorcontrib><creatorcontrib>Cai, Guohong</creatorcontrib><creatorcontrib>Müller, Peter C</creatorcontrib><creatorcontrib>Wang, Liguang</creatorcontrib><creatorcontrib>Cai, Guanqun</creatorcontrib><creatorcontrib>Liu, Tiefeng</creatorcontrib><creatorcontrib>Qu, Shangqing</creatorcontrib><creatorcontrib>Yin, Yufeng</creatorcontrib><creatorcontrib>Li, Guobao</creatorcontrib><creatorcontrib>Corkett, Alex J</creatorcontrib><creatorcontrib>Dronskowski, Richard</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Sun, Junliang</creatorcontrib><title>Novel Mn2 Anode with Cationic and Anionic Redox Chemistry for Li‐Ion Batteries</title><title>Advanced functional materials</title><description>α‐Mn[N(CN)2]2 (Pnnm) with divalent Mn2+ being octahedrally coordinated by six [N(CN)2]− dicyanamide (dca‒) complex anions is known since 1999. A novel β polymorph is now prepared and its structure characterized via powder X‐ray diffraction. β‐Mn[N(CN)2]2 also crystallizes orthorhombically (Cmcm) but with Mn2+ tetrahedrally coordinated to four [N(CN)2]− anions. Property‐wise, α‐Mn[N(CN)2]2 can be efficiently used as a negative electrode material for lithium‐ion batteries, maintaining a large reversible capacity of more than 600 mAh g−1 for 250 cycles tested at 0.5 C, comparing favorably to well‐established negative electrode references such as graphite (≈372 mAh g−1). The electrochemical lithiation/delithiation mechanism of α‐Mn[N(CN)2]2 is investigated using advanced characterization techniques and theoretical calculations. Upon lithiation, α‐Mn[N(CN)2]2 undergoes a reversible conversion reaction, forming LiN(CN)2 and metallic manganese, which are transformed back into α‐Mn[N(CN)2]2 upon delithiation. Further, there is evidence for reversible and additional charge/discharge processes on the dca‒ anion throughout the entire discharge/charge process in α‐Mn[N(CN)2]2, reflecting an anionic charge compensation. Moreover, density‐functional (DFT) and chemical‐bonding theory are employed to investigate the detailed anodic behavior of α‐Mn[N(CN)2]2 via conversion reaction during (de‐)lithiation processes. This mechanism, evidenced for the first time in transition metal dicyanamides, is likely behind its outstanding electrochemical properties.</description><subject>Anions</subject><subject>Chemical bonds</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Lithium-ion batteries</subject><subject>Manganese</subject><subject>Transition metals</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNissOATEYRhshMS5b6z-xRtuR1iyZEBJExMJOGtOJykxLW7edR_CMnoSEWFudk_N9CDUIbhOMaUckad6mmHYx5zQqoIAwwlohpr3iz8m6jCrO7TEmnIfdAC3m5iwzmGkKfW0SCRfldxALr4xWWxA6efePL2VirhDvZK6ctzdIjYWpet4fE6NhILyXVklXQ6VUZE7Wv6yi5mi4isetgzXHk3R-szcnq9_TJiSUsYgRysP_Xi-uiUU3</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Qiao, Xianji</creator><creator>Cai, Guohong</creator><creator>Müller, Peter C</creator><creator>Wang, Liguang</creator><creator>Cai, Guanqun</creator><creator>Liu, Tiefeng</creator><creator>Qu, Shangqing</creator><creator>Yin, Yufeng</creator><creator>Li, Guobao</creator><creator>Corkett, Alex J</creator><creator>Dronskowski, Richard</creator><creator>Lu, Jun</creator><creator>Sun, Junliang</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20241101</creationdate><title>Novel Mn2 Anode with Cationic and Anionic Redox Chemistry for Li‐Ion Batteries</title><author>Qiao, Xianji ; Cai, Guohong ; Müller, Peter C ; Wang, Liguang ; Cai, Guanqun ; Liu, Tiefeng ; Qu, Shangqing ; Yin, Yufeng ; Li, Guobao ; Corkett, Alex J ; Dronskowski, Richard ; Lu, Jun ; Sun, Junliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31266961273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anions</topic><topic>Chemical bonds</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Lithium-ion batteries</topic><topic>Manganese</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Xianji</creatorcontrib><creatorcontrib>Cai, Guohong</creatorcontrib><creatorcontrib>Müller, Peter C</creatorcontrib><creatorcontrib>Wang, Liguang</creatorcontrib><creatorcontrib>Cai, Guanqun</creatorcontrib><creatorcontrib>Liu, Tiefeng</creatorcontrib><creatorcontrib>Qu, Shangqing</creatorcontrib><creatorcontrib>Yin, Yufeng</creatorcontrib><creatorcontrib>Li, Guobao</creatorcontrib><creatorcontrib>Corkett, Alex J</creatorcontrib><creatorcontrib>Dronskowski, Richard</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Sun, Junliang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Xianji</au><au>Cai, Guohong</au><au>Müller, Peter C</au><au>Wang, Liguang</au><au>Cai, Guanqun</au><au>Liu, Tiefeng</au><au>Qu, Shangqing</au><au>Yin, Yufeng</au><au>Li, Guobao</au><au>Corkett, Alex J</au><au>Dronskowski, Richard</au><au>Lu, Jun</au><au>Sun, Junliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Mn2 Anode with Cationic and Anionic Redox Chemistry for Li‐Ion Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>34</volume><issue>46</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>α‐Mn[N(CN)2]2 (Pnnm) with divalent Mn2+ being octahedrally coordinated by six [N(CN)2]− dicyanamide (dca‒) complex anions is known since 1999. A novel β polymorph is now prepared and its structure characterized via powder X‐ray diffraction. β‐Mn[N(CN)2]2 also crystallizes orthorhombically (Cmcm) but with Mn2+ tetrahedrally coordinated to four [N(CN)2]− anions. Property‐wise, α‐Mn[N(CN)2]2 can be efficiently used as a negative electrode material for lithium‐ion batteries, maintaining a large reversible capacity of more than 600 mAh g−1 for 250 cycles tested at 0.5 C, comparing favorably to well‐established negative electrode references such as graphite (≈372 mAh g−1). The electrochemical lithiation/delithiation mechanism of α‐Mn[N(CN)2]2 is investigated using advanced characterization techniques and theoretical calculations. Upon lithiation, α‐Mn[N(CN)2]2 undergoes a reversible conversion reaction, forming LiN(CN)2 and metallic manganese, which are transformed back into α‐Mn[N(CN)2]2 upon delithiation. Further, there is evidence for reversible and additional charge/discharge processes on the dca‒ anion throughout the entire discharge/charge process in α‐Mn[N(CN)2]2, reflecting an anionic charge compensation. Moreover, density‐functional (DFT) and chemical‐bonding theory are employed to investigate the detailed anodic behavior of α‐Mn[N(CN)2]2 via conversion reaction during (de‐)lithiation processes. This mechanism, evidenced for the first time in transition metal dicyanamides, is likely behind its outstanding electrochemical properties.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202407729</doi></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-11, Vol.34 (46)
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3126696127
source Wiley Online Library Journals Frontfile Complete
subjects Anions
Chemical bonds
Discharge
Electrochemical analysis
Electrode materials
Electrodes
Lithium-ion batteries
Manganese
Transition metals
title Novel Mn2 Anode with Cationic and Anionic Redox Chemistry for Li‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Mn2%20Anode%20with%20Cationic%20and%20Anionic%20Redox%20Chemistry%20for%20Li%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Qiao,%20Xianji&rft.date=2024-11-01&rft.volume=34&rft.issue=46&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202407729&rft_dat=%3Cproquest%3E3126696127%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126696127&rft_id=info:pmid/&rfr_iscdi=true