Interfacial Passivation of Kesterite Solar Cells for Enhanced Carrier Lifetime: Ab Initio Nonadiabatic Molecular Dynamics Study

Nonradiative recombination at the front contact interface of kesterite solar cells hinders the extraction of photo‐generated carriers, significantly restricting the efficiency enhancement. However, identifying the recombination centers and proposing effective passivation strategies remain open quest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-11, Vol.34 (46), p.n/a
Hauptverfasser: Xiang, Huiwen, Zheng, Zhenfa, Zhao, Ke, Liu, Chengyan, Zhao, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 46
container_start_page
container_title Advanced functional materials
container_volume 34
creator Xiang, Huiwen
Zheng, Zhenfa
Zhao, Ke
Liu, Chengyan
Zhao, Jin
description Nonradiative recombination at the front contact interface of kesterite solar cells hinders the extraction of photo‐generated carriers, significantly restricting the efficiency enhancement. However, identifying the recombination centers and proposing effective passivation strategies remain open questions. First‐principles calculations combining with nonadiabatic molecular dynamics (NAMD) simulations unveil that the interfacial translational symmetry breaking in elemental valence states leads to a detrimental donor‐like Cu2ZnSnS4/CdS interface with deep states originating from the interfacial Sn‐5s orbital, which serve as significant nonradiative recombination centers. Here, two mechanisms are proposed for eliminating the deep interface states: 1) directly replacing Sn‐5s with higher outer orbital levels by substituting group IIIA elements (In and Ga) for the interfacial Sn atom; 2) introducing an extra defect‐level coupling with Sn‐5s by substituting group VA elements (N, P, and As) for the S atoms bonded with the interfacial Sn atom. The representative InSn and PS acceptor defects, which are energetically favorable at the detrimental donor‐like interface, effectively passivate the deep interface states, markedly improving the carrier lifetimes by weakening nonadiabatic coupling between the band edge and the interfacial states. This study reveals the origin of the interfacial nonradiative recombination of kesterite solar cells and offers insights into interfacial passivation in semiconductor devices. The deep interface states of Cu2ZnSnS4/CdS heterojunction in kesterite solar cells are identified as the interfacial Sn‐5s orbital due to translational symmetry breaking in the elemental valence states, which are successfully passivated by two mechanisms: cation or anion substitution to elevate the original deep state or introduce extra defect level coupling with it, enhancing the carrier lifetimes.
doi_str_mv 10.1002/adfm.202407991
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126696047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126696047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2021-41da18b15f54877120b0e56ee99ffdee202fe6d1bb14cd23490d9ec4cb92d65f3</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxRdRsFavngOetyb7kW28lW2rxfoBVfC2ZJMJpmyTmuwqe_JfN6VSj55mYH7vDe9F0SXBI4Jxcs2l2owSnGS4YIwcRQNCCY1TnIyPDzt5O43OvF9jTIoizQbR98K04BQXmjfomXuvP3mrrUFWoXvw4aZbQCvbcIdKaBqPlHVoZt65ESBRyZ3T4NBSK2j1Bm7QpEYLo4MFerSGS83r4CfQg21AdDuXaW_4RguPVm0n-_PoRPHGw8XvHEav89lLeRcvn24X5WQZi5CIxBmRnIxrkqs8GxcFSXCNIacAjCklAQKkgEpS1yQTMkkzhiUDkYmaJZLmKh1GV3vfrbMfXQhWrW3nTHhZpSShlFGcFYEa7SnhrPcOVLV1esNdXxFc7UqudiVXh5KDgO0FX7qB_h-6mkznD3_aH6HUgk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126696047</pqid></control><display><type>article</type><title>Interfacial Passivation of Kesterite Solar Cells for Enhanced Carrier Lifetime: Ab Initio Nonadiabatic Molecular Dynamics Study</title><source>Wiley Journals</source><creator>Xiang, Huiwen ; Zheng, Zhenfa ; Zhao, Ke ; Liu, Chengyan ; Zhao, Jin</creator><creatorcontrib>Xiang, Huiwen ; Zheng, Zhenfa ; Zhao, Ke ; Liu, Chengyan ; Zhao, Jin</creatorcontrib><description>Nonradiative recombination at the front contact interface of kesterite solar cells hinders the extraction of photo‐generated carriers, significantly restricting the efficiency enhancement. However, identifying the recombination centers and proposing effective passivation strategies remain open questions. First‐principles calculations combining with nonadiabatic molecular dynamics (NAMD) simulations unveil that the interfacial translational symmetry breaking in elemental valence states leads to a detrimental donor‐like Cu2ZnSnS4/CdS interface with deep states originating from the interfacial Sn‐5s orbital, which serve as significant nonradiative recombination centers. Here, two mechanisms are proposed for eliminating the deep interface states: 1) directly replacing Sn‐5s with higher outer orbital levels by substituting group IIIA elements (In and Ga) for the interfacial Sn atom; 2) introducing an extra defect‐level coupling with Sn‐5s by substituting group VA elements (N, P, and As) for the S atoms bonded with the interfacial Sn atom. The representative InSn and PS acceptor defects, which are energetically favorable at the detrimental donor‐like interface, effectively passivate the deep interface states, markedly improving the carrier lifetimes by weakening nonadiabatic coupling between the band edge and the interfacial states. This study reveals the origin of the interfacial nonradiative recombination of kesterite solar cells and offers insights into interfacial passivation in semiconductor devices. The deep interface states of Cu2ZnSnS4/CdS heterojunction in kesterite solar cells are identified as the interfacial Sn‐5s orbital due to translational symmetry breaking in the elemental valence states, which are successfully passivated by two mechanisms: cation or anion substitution to elevate the original deep state or introduce extra defect level coupling with it, enhancing the carrier lifetimes.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202407991</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Atomic properties ; Bonding strength ; Broken symmetry ; Carrier lifetime ; carrier lifetimes ; Carrier recombination ; Chemical bonds ; Defects ; First principles ; Gallium ; interfacial passivation ; kesterite solar cells ; Molecular dynamics ; nonadiabatic molecular dynamics ; Passivity ; Photovoltaic cells ; Semiconductor devices ; Solar cells ; Valence</subject><ispartof>Advanced functional materials, 2024-11, Vol.34 (46), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2021-41da18b15f54877120b0e56ee99ffdee202fe6d1bb14cd23490d9ec4cb92d65f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202407991$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202407991$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xiang, Huiwen</creatorcontrib><creatorcontrib>Zheng, Zhenfa</creatorcontrib><creatorcontrib>Zhao, Ke</creatorcontrib><creatorcontrib>Liu, Chengyan</creatorcontrib><creatorcontrib>Zhao, Jin</creatorcontrib><title>Interfacial Passivation of Kesterite Solar Cells for Enhanced Carrier Lifetime: Ab Initio Nonadiabatic Molecular Dynamics Study</title><title>Advanced functional materials</title><description>Nonradiative recombination at the front contact interface of kesterite solar cells hinders the extraction of photo‐generated carriers, significantly restricting the efficiency enhancement. However, identifying the recombination centers and proposing effective passivation strategies remain open questions. First‐principles calculations combining with nonadiabatic molecular dynamics (NAMD) simulations unveil that the interfacial translational symmetry breaking in elemental valence states leads to a detrimental donor‐like Cu2ZnSnS4/CdS interface with deep states originating from the interfacial Sn‐5s orbital, which serve as significant nonradiative recombination centers. Here, two mechanisms are proposed for eliminating the deep interface states: 1) directly replacing Sn‐5s with higher outer orbital levels by substituting group IIIA elements (In and Ga) for the interfacial Sn atom; 2) introducing an extra defect‐level coupling with Sn‐5s by substituting group VA elements (N, P, and As) for the S atoms bonded with the interfacial Sn atom. The representative InSn and PS acceptor defects, which are energetically favorable at the detrimental donor‐like interface, effectively passivate the deep interface states, markedly improving the carrier lifetimes by weakening nonadiabatic coupling between the band edge and the interfacial states. This study reveals the origin of the interfacial nonradiative recombination of kesterite solar cells and offers insights into interfacial passivation in semiconductor devices. The deep interface states of Cu2ZnSnS4/CdS heterojunction in kesterite solar cells are identified as the interfacial Sn‐5s orbital due to translational symmetry breaking in the elemental valence states, which are successfully passivated by two mechanisms: cation or anion substitution to elevate the original deep state or introduce extra defect level coupling with it, enhancing the carrier lifetimes.</description><subject>Atomic properties</subject><subject>Bonding strength</subject><subject>Broken symmetry</subject><subject>Carrier lifetime</subject><subject>carrier lifetimes</subject><subject>Carrier recombination</subject><subject>Chemical bonds</subject><subject>Defects</subject><subject>First principles</subject><subject>Gallium</subject><subject>interfacial passivation</subject><subject>kesterite solar cells</subject><subject>Molecular dynamics</subject><subject>nonadiabatic molecular dynamics</subject><subject>Passivity</subject><subject>Photovoltaic cells</subject><subject>Semiconductor devices</subject><subject>Solar cells</subject><subject>Valence</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxRdRsFavngOetyb7kW28lW2rxfoBVfC2ZJMJpmyTmuwqe_JfN6VSj55mYH7vDe9F0SXBI4Jxcs2l2owSnGS4YIwcRQNCCY1TnIyPDzt5O43OvF9jTIoizQbR98K04BQXmjfomXuvP3mrrUFWoXvw4aZbQCvbcIdKaBqPlHVoZt65ESBRyZ3T4NBSK2j1Bm7QpEYLo4MFerSGS83r4CfQg21AdDuXaW_4RguPVm0n-_PoRPHGw8XvHEav89lLeRcvn24X5WQZi5CIxBmRnIxrkqs8GxcFSXCNIacAjCklAQKkgEpS1yQTMkkzhiUDkYmaJZLmKh1GV3vfrbMfXQhWrW3nTHhZpSShlFGcFYEa7SnhrPcOVLV1esNdXxFc7UqudiVXh5KDgO0FX7qB_h-6mkznD3_aH6HUgk8</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Xiang, Huiwen</creator><creator>Zheng, Zhenfa</creator><creator>Zhao, Ke</creator><creator>Liu, Chengyan</creator><creator>Zhao, Jin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20241101</creationdate><title>Interfacial Passivation of Kesterite Solar Cells for Enhanced Carrier Lifetime: Ab Initio Nonadiabatic Molecular Dynamics Study</title><author>Xiang, Huiwen ; Zheng, Zhenfa ; Zhao, Ke ; Liu, Chengyan ; Zhao, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2021-41da18b15f54877120b0e56ee99ffdee202fe6d1bb14cd23490d9ec4cb92d65f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic properties</topic><topic>Bonding strength</topic><topic>Broken symmetry</topic><topic>Carrier lifetime</topic><topic>carrier lifetimes</topic><topic>Carrier recombination</topic><topic>Chemical bonds</topic><topic>Defects</topic><topic>First principles</topic><topic>Gallium</topic><topic>interfacial passivation</topic><topic>kesterite solar cells</topic><topic>Molecular dynamics</topic><topic>nonadiabatic molecular dynamics</topic><topic>Passivity</topic><topic>Photovoltaic cells</topic><topic>Semiconductor devices</topic><topic>Solar cells</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Huiwen</creatorcontrib><creatorcontrib>Zheng, Zhenfa</creatorcontrib><creatorcontrib>Zhao, Ke</creatorcontrib><creatorcontrib>Liu, Chengyan</creatorcontrib><creatorcontrib>Zhao, Jin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Huiwen</au><au>Zheng, Zhenfa</au><au>Zhao, Ke</au><au>Liu, Chengyan</au><au>Zhao, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Passivation of Kesterite Solar Cells for Enhanced Carrier Lifetime: Ab Initio Nonadiabatic Molecular Dynamics Study</atitle><jtitle>Advanced functional materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>34</volume><issue>46</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Nonradiative recombination at the front contact interface of kesterite solar cells hinders the extraction of photo‐generated carriers, significantly restricting the efficiency enhancement. However, identifying the recombination centers and proposing effective passivation strategies remain open questions. First‐principles calculations combining with nonadiabatic molecular dynamics (NAMD) simulations unveil that the interfacial translational symmetry breaking in elemental valence states leads to a detrimental donor‐like Cu2ZnSnS4/CdS interface with deep states originating from the interfacial Sn‐5s orbital, which serve as significant nonradiative recombination centers. Here, two mechanisms are proposed for eliminating the deep interface states: 1) directly replacing Sn‐5s with higher outer orbital levels by substituting group IIIA elements (In and Ga) for the interfacial Sn atom; 2) introducing an extra defect‐level coupling with Sn‐5s by substituting group VA elements (N, P, and As) for the S atoms bonded with the interfacial Sn atom. The representative InSn and PS acceptor defects, which are energetically favorable at the detrimental donor‐like interface, effectively passivate the deep interface states, markedly improving the carrier lifetimes by weakening nonadiabatic coupling between the band edge and the interfacial states. This study reveals the origin of the interfacial nonradiative recombination of kesterite solar cells and offers insights into interfacial passivation in semiconductor devices. The deep interface states of Cu2ZnSnS4/CdS heterojunction in kesterite solar cells are identified as the interfacial Sn‐5s orbital due to translational symmetry breaking in the elemental valence states, which are successfully passivated by two mechanisms: cation or anion substitution to elevate the original deep state or introduce extra defect level coupling with it, enhancing the carrier lifetimes.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202407991</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-11, Vol.34 (46), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3126696047
source Wiley Journals
subjects Atomic properties
Bonding strength
Broken symmetry
Carrier lifetime
carrier lifetimes
Carrier recombination
Chemical bonds
Defects
First principles
Gallium
interfacial passivation
kesterite solar cells
Molecular dynamics
nonadiabatic molecular dynamics
Passivity
Photovoltaic cells
Semiconductor devices
Solar cells
Valence
title Interfacial Passivation of Kesterite Solar Cells for Enhanced Carrier Lifetime: Ab Initio Nonadiabatic Molecular Dynamics Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Passivation%20of%20Kesterite%20Solar%20Cells%20for%20Enhanced%20Carrier%20Lifetime:%20Ab%20Initio%20Nonadiabatic%20Molecular%20Dynamics%20Study&rft.jtitle=Advanced%20functional%20materials&rft.au=Xiang,%20Huiwen&rft.date=2024-11-01&rft.volume=34&rft.issue=46&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202407991&rft_dat=%3Cproquest_cross%3E3126696047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126696047&rft_id=info:pmid/&rfr_iscdi=true