FlowCorrGCN: Enhancing Flow Correlation Through Graph Convolutional Networks and Triplet Networks

Anonymous network tracing is a significant research subject in the field of network security, and flow correlation technology serves as a fundamental technique for deanonymizing network traffic. Existing flow correlation techniques are considered ineffective and unreliable when applied on a large sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2024-01, Vol.2024 (1)
Hauptverfasser: Zhai, Jiangtao, Zhang, Kaijie, Zeng, Xiaolong, Meng, Yufei, Liu, Guangjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title International journal of intelligent systems
container_volume 2024
creator Zhai, Jiangtao
Zhang, Kaijie
Zeng, Xiaolong
Meng, Yufei
Liu, Guangjie
description Anonymous network tracing is a significant research subject in the field of network security, and flow correlation technology serves as a fundamental technique for deanonymizing network traffic. Existing flow correlation techniques are considered ineffective and unreliable when applied on a large scale because they exhibit high false‐positive rates or require impractically long periods of traffic observation to achieve reliable correlations. To address this issue, this paper proposed an innovative flow correlation approach for the typical and most widely used Tor anonymous network by combining graph convolutional neural networks with triplet networks. Our proposed method involves extracting features such as packet intervals, packet lengths, and directions from Tor network traffic and encoding each flow into a graph representation. The integration of triplet networks enhances the internode relationships, which can effectively fuse flow representations with node associations. The graph convolutional neural network extracts features from the input graph topology, mapping them to distinct representations in the embedding space, thus effectively distinguishing different Tor flows. Experimental results demonstrate that with a false‐positive rate as low as 0.1%, the correlation accuracy reaches 86.4%, showcasing a 5.1% accuracy improvement compared to the existing state‐of‐the‐art methods.
doi_str_mv 10.1155/2024/8823511
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126584976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126584976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c188t-bbebf517025e3ee6a46b5f59d91df034c8f147f2361cd27d873120c9de2e96203</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKd3_oCAt9bl5KNJvZPipjDmzQTvStoma2dtatI6_Pe2bHh14HkfXg4vQrdAHgCEWFBC-UIpygTAGZoBSVQEAB_naEaU4pECyS7RVQh7QgAkFzOkl407pM77Vbp5xM9tpduibnd4wnjiptF97Vq8rbwbdhVeed1VY9L-uGaYEt3gjekPzn8GrNsSb33dNab_h9fowuommJvTnaP35fM2fYnWb6vX9GkdFaBUH-W5ya0ASagwzJhY8zgXViRlAqUljBfKApeWshiKkspSSQaUFElpqEliStgc3R17O---BxP6bO8GP74XstGMheKJjEfr_mgV3oXgjc06X39p_5sByaYRs2nE7DQi-wNsg2RV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126584976</pqid></control><display><type>article</type><title>FlowCorrGCN: Enhancing Flow Correlation Through Graph Convolutional Networks and Triplet Networks</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Zhai, Jiangtao ; Zhang, Kaijie ; Zeng, Xiaolong ; Meng, Yufei ; Liu, Guangjie</creator><contributor>Tan, Yu-an ; Yu-an Tan</contributor><creatorcontrib>Zhai, Jiangtao ; Zhang, Kaijie ; Zeng, Xiaolong ; Meng, Yufei ; Liu, Guangjie ; Tan, Yu-an ; Yu-an Tan</creatorcontrib><description>Anonymous network tracing is a significant research subject in the field of network security, and flow correlation technology serves as a fundamental technique for deanonymizing network traffic. Existing flow correlation techniques are considered ineffective and unreliable when applied on a large scale because they exhibit high false‐positive rates or require impractically long periods of traffic observation to achieve reliable correlations. To address this issue, this paper proposed an innovative flow correlation approach for the typical and most widely used Tor anonymous network by combining graph convolutional neural networks with triplet networks. Our proposed method involves extracting features such as packet intervals, packet lengths, and directions from Tor network traffic and encoding each flow into a graph representation. The integration of triplet networks enhances the internode relationships, which can effectively fuse flow representations with node associations. The graph convolutional neural network extracts features from the input graph topology, mapping them to distinct representations in the embedding space, thus effectively distinguishing different Tor flows. Experimental results demonstrate that with a false‐positive rate as low as 0.1%, the correlation accuracy reaches 86.4%, showcasing a 5.1% accuracy improvement compared to the existing state‐of‐the‐art methods.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1155/2024/8823511</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Communication ; Communications traffic ; Correlation ; Correlation analysis ; Data encryption ; Deep learning ; Feature extraction ; Flow mapping ; Graph neural networks ; Graph representations ; Graphical representations ; Methods ; Neural networks ; Privacy ; Topology ; Traffic flow</subject><ispartof>International journal of intelligent systems, 2024-01, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Jiangtao Zhai et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c188t-bbebf517025e3ee6a46b5f59d91df034c8f147f2361cd27d873120c9de2e96203</cites><orcidid>0009-0000-0349-3873 ; 0000-0003-4729-7406 ; 0000-0001-8557-9899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126584976/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126584976?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,21390,21391,21392,21393,23258,27926,27927,33532,33705,33746,34007,34316,43661,43789,43807,43955,44069,64387,64391,72471,74106,74285,74304,74475,74592</link.rule.ids></links><search><contributor>Tan, Yu-an</contributor><contributor>Yu-an Tan</contributor><creatorcontrib>Zhai, Jiangtao</creatorcontrib><creatorcontrib>Zhang, Kaijie</creatorcontrib><creatorcontrib>Zeng, Xiaolong</creatorcontrib><creatorcontrib>Meng, Yufei</creatorcontrib><creatorcontrib>Liu, Guangjie</creatorcontrib><title>FlowCorrGCN: Enhancing Flow Correlation Through Graph Convolutional Networks and Triplet Networks</title><title>International journal of intelligent systems</title><description>Anonymous network tracing is a significant research subject in the field of network security, and flow correlation technology serves as a fundamental technique for deanonymizing network traffic. Existing flow correlation techniques are considered ineffective and unreliable when applied on a large scale because they exhibit high false‐positive rates or require impractically long periods of traffic observation to achieve reliable correlations. To address this issue, this paper proposed an innovative flow correlation approach for the typical and most widely used Tor anonymous network by combining graph convolutional neural networks with triplet networks. Our proposed method involves extracting features such as packet intervals, packet lengths, and directions from Tor network traffic and encoding each flow into a graph representation. The integration of triplet networks enhances the internode relationships, which can effectively fuse flow representations with node associations. The graph convolutional neural network extracts features from the input graph topology, mapping them to distinct representations in the embedding space, thus effectively distinguishing different Tor flows. Experimental results demonstrate that with a false‐positive rate as low as 0.1%, the correlation accuracy reaches 86.4%, showcasing a 5.1% accuracy improvement compared to the existing state‐of‐the‐art methods.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Communication</subject><subject>Communications traffic</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Data encryption</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Flow mapping</subject><subject>Graph neural networks</subject><subject>Graph representations</subject><subject>Graphical representations</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Privacy</subject><subject>Topology</subject><subject>Traffic flow</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kF1LwzAUhoMoOKd3_oCAt9bl5KNJvZPipjDmzQTvStoma2dtatI6_Pe2bHh14HkfXg4vQrdAHgCEWFBC-UIpygTAGZoBSVQEAB_naEaU4pECyS7RVQh7QgAkFzOkl407pM77Vbp5xM9tpduibnd4wnjiptF97Vq8rbwbdhVeed1VY9L-uGaYEt3gjekPzn8GrNsSb33dNab_h9fowuommJvTnaP35fM2fYnWb6vX9GkdFaBUH-W5ya0ASagwzJhY8zgXViRlAqUljBfKApeWshiKkspSSQaUFElpqEliStgc3R17O---BxP6bO8GP74XstGMheKJjEfr_mgV3oXgjc06X39p_5sByaYRs2nE7DQi-wNsg2RV</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Zhai, Jiangtao</creator><creator>Zhang, Kaijie</creator><creator>Zeng, Xiaolong</creator><creator>Meng, Yufei</creator><creator>Liu, Guangjie</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0009-0000-0349-3873</orcidid><orcidid>https://orcid.org/0000-0003-4729-7406</orcidid><orcidid>https://orcid.org/0000-0001-8557-9899</orcidid></search><sort><creationdate>20240101</creationdate><title>FlowCorrGCN: Enhancing Flow Correlation Through Graph Convolutional Networks and Triplet Networks</title><author>Zhai, Jiangtao ; Zhang, Kaijie ; Zeng, Xiaolong ; Meng, Yufei ; Liu, Guangjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c188t-bbebf517025e3ee6a46b5f59d91df034c8f147f2361cd27d873120c9de2e96203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Communication</topic><topic>Communications traffic</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Data encryption</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Flow mapping</topic><topic>Graph neural networks</topic><topic>Graph representations</topic><topic>Graphical representations</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Privacy</topic><topic>Topology</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Jiangtao</creatorcontrib><creatorcontrib>Zhang, Kaijie</creatorcontrib><creatorcontrib>Zeng, Xiaolong</creatorcontrib><creatorcontrib>Meng, Yufei</creatorcontrib><creatorcontrib>Liu, Guangjie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Jiangtao</au><au>Zhang, Kaijie</au><au>Zeng, Xiaolong</au><au>Meng, Yufei</au><au>Liu, Guangjie</au><au>Tan, Yu-an</au><au>Yu-an Tan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FlowCorrGCN: Enhancing Flow Correlation Through Graph Convolutional Networks and Triplet Networks</atitle><jtitle>International journal of intelligent systems</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>Anonymous network tracing is a significant research subject in the field of network security, and flow correlation technology serves as a fundamental technique for deanonymizing network traffic. Existing flow correlation techniques are considered ineffective and unreliable when applied on a large scale because they exhibit high false‐positive rates or require impractically long periods of traffic observation to achieve reliable correlations. To address this issue, this paper proposed an innovative flow correlation approach for the typical and most widely used Tor anonymous network by combining graph convolutional neural networks with triplet networks. Our proposed method involves extracting features such as packet intervals, packet lengths, and directions from Tor network traffic and encoding each flow into a graph representation. The integration of triplet networks enhances the internode relationships, which can effectively fuse flow representations with node associations. The graph convolutional neural network extracts features from the input graph topology, mapping them to distinct representations in the embedding space, thus effectively distinguishing different Tor flows. Experimental results demonstrate that with a false‐positive rate as low as 0.1%, the correlation accuracy reaches 86.4%, showcasing a 5.1% accuracy improvement compared to the existing state‐of‐the‐art methods.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1155/2024/8823511</doi><orcidid>https://orcid.org/0009-0000-0349-3873</orcidid><orcidid>https://orcid.org/0000-0003-4729-7406</orcidid><orcidid>https://orcid.org/0000-0001-8557-9899</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-8173
ispartof International journal of intelligent systems, 2024-01, Vol.2024 (1)
issn 0884-8173
1098-111X
language eng
recordid cdi_proquest_journals_3126584976
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection; ProQuest Central
subjects Accuracy
Algorithms
Artificial neural networks
Communication
Communications traffic
Correlation
Correlation analysis
Data encryption
Deep learning
Feature extraction
Flow mapping
Graph neural networks
Graph representations
Graphical representations
Methods
Neural networks
Privacy
Topology
Traffic flow
title FlowCorrGCN: Enhancing Flow Correlation Through Graph Convolutional Networks and Triplet Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FlowCorrGCN:%20Enhancing%20Flow%20Correlation%20Through%20Graph%20Convolutional%20Networks%20and%20Triplet%20Networks&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Zhai,%20Jiangtao&rft.date=2024-01-01&rft.volume=2024&rft.issue=1&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1155/2024/8823511&rft_dat=%3Cproquest_cross%3E3126584976%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126584976&rft_id=info:pmid/&rfr_iscdi=true