A Deep Convolutional Autoencoder–Enabled Channel Estimation Method in Intelligent Wireless Communication Systems

Through modeling the characteristics of wireless transmission channels, channel estimation can improve signal detection and demodulation techniques, enhance the spectrum utilization, optimize communication performance, and enhance the quality, reliability, and efficiency of intelligent wireless comm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2024-01, Vol.2024 (1)
1. Verfasser: Tian, Xinyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title International journal of intelligent systems
container_volume 2024
creator Tian, Xinyu
description Through modeling the characteristics of wireless transmission channels, channel estimation can improve signal detection and demodulation techniques, enhance the spectrum utilization, optimize communication performance, and enhance the quality, reliability, and efficiency of intelligent wireless communication systems. In this paper, we propose a deep convolutional autoencoder–based channel estimation method in intelligent wireless communication systems. At first, the channel time‐frequency response matrix between the transmitter and receiver can be represented as 2D images. Then they are fed into the convolutional autoencoder to learn key channel features. To reduce the structural complexity of the deep learning model and improve its inference efficiency, we adopt the method of removing redundant parameters to achieve model compression. Iterative training and pruning based on stochastic gradient descent (SGD) and weight importance evaluation are alternated to obtain a lightweight deep learning model for channel estimation. Finally, extensive simulation results have verified the effectiveness and superiority of the proposed method.
doi_str_mv 10.1155/2024/9343734
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126584898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126584898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c188t-df11cf7521932bf35836142492b7a48c30e28c2ad93f35a7185ce2fa524b3c2e3</originalsourceid><addsrcrecordid>eNotkEFOwzAURC0EEqWw4wCW2BKabzuNs6xKgUpFLADBLnKcHxrk2MV2kLrjDtyQk5CqXc1inkaaR8glpDcAWTZhKROTgguec3FERpAWMgGA92MySqUUiYScn5KzED7TFCAX2Yj4Gb1F3NC5s9_O9LF1Vhk666NDq12N_u_nd2FVZbCm87WyFg1dhNh2aofSR4xrV9PW0qWNaEz7gTbSt9ajwRCG1a7rbav38PM2ROzCOTlplAl4ccgxeb1bvMwfktXT_XI-WyUapIxJ3QDoJs8YFJxVDc8kn4JgomBVroTUPEUmNVN1wYdS5SAzjaxRGRMV1wz5mFztdzfeffUYYvnpej_cCyUHNs2kkIUcqOs9pb0LwWNTbvzwzm9LSMud1XJntTxY5f-FBWud</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126584898</pqid></control><display><type>article</type><title>A Deep Convolutional Autoencoder–Enabled Channel Estimation Method in Intelligent Wireless Communication Systems</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central UK/Ireland</source><source>Wiley Open Access</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Tian, Xinyu</creator><contributor>Jiang, Weiwei ; Weiwei Jiang</contributor><creatorcontrib>Tian, Xinyu ; Jiang, Weiwei ; Weiwei Jiang</creatorcontrib><description>Through modeling the characteristics of wireless transmission channels, channel estimation can improve signal detection and demodulation techniques, enhance the spectrum utilization, optimize communication performance, and enhance the quality, reliability, and efficiency of intelligent wireless communication systems. In this paper, we propose a deep convolutional autoencoder–based channel estimation method in intelligent wireless communication systems. At first, the channel time‐frequency response matrix between the transmitter and receiver can be represented as 2D images. Then they are fed into the convolutional autoencoder to learn key channel features. To reduce the structural complexity of the deep learning model and improve its inference efficiency, we adopt the method of removing redundant parameters to achieve model compression. Iterative training and pruning based on stochastic gradient descent (SGD) and weight importance evaluation are alternated to obtain a lightweight deep learning model for channel estimation. Finally, extensive simulation results have verified the effectiveness and superiority of the proposed method.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1155/2024/9343734</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Algorithms ; Codes ; Data transmission ; Deep learning ; Demodulation ; Design ; Frequency response ; Image compression ; Image enhancement ; Maximum likelihood method ; Network management systems ; Neural networks ; Noise ; Optimization ; Receivers &amp; amplifiers ; Signal detection ; Signal processing ; Signal quality ; Sparsity ; Statistical analysis ; Statistical methods ; System reliability ; Weight reduction ; Wireless communication systems ; Wireless communications</subject><ispartof>International journal of intelligent systems, 2024-01, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Xinyu Tian. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c188t-df11cf7521932bf35836142492b7a48c30e28c2ad93f35a7185ce2fa524b3c2e3</cites><orcidid>0009-0005-6694-0585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126584898/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126584898?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33703,33744,34005,34314,43659,43787,43805,43953,44067,64385,64389,72469,74104,74283,74302,74473,74590</link.rule.ids></links><search><contributor>Jiang, Weiwei</contributor><contributor>Weiwei Jiang</contributor><creatorcontrib>Tian, Xinyu</creatorcontrib><title>A Deep Convolutional Autoencoder–Enabled Channel Estimation Method in Intelligent Wireless Communication Systems</title><title>International journal of intelligent systems</title><description>Through modeling the characteristics of wireless transmission channels, channel estimation can improve signal detection and demodulation techniques, enhance the spectrum utilization, optimize communication performance, and enhance the quality, reliability, and efficiency of intelligent wireless communication systems. In this paper, we propose a deep convolutional autoencoder–based channel estimation method in intelligent wireless communication systems. At first, the channel time‐frequency response matrix between the transmitter and receiver can be represented as 2D images. Then they are fed into the convolutional autoencoder to learn key channel features. To reduce the structural complexity of the deep learning model and improve its inference efficiency, we adopt the method of removing redundant parameters to achieve model compression. Iterative training and pruning based on stochastic gradient descent (SGD) and weight importance evaluation are alternated to obtain a lightweight deep learning model for channel estimation. Finally, extensive simulation results have verified the effectiveness and superiority of the proposed method.</description><subject>Algorithms</subject><subject>Codes</subject><subject>Data transmission</subject><subject>Deep learning</subject><subject>Demodulation</subject><subject>Design</subject><subject>Frequency response</subject><subject>Image compression</subject><subject>Image enhancement</subject><subject>Maximum likelihood method</subject><subject>Network management systems</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Optimization</subject><subject>Receivers &amp; amplifiers</subject><subject>Signal detection</subject><subject>Signal processing</subject><subject>Signal quality</subject><subject>Sparsity</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>System reliability</subject><subject>Weight reduction</subject><subject>Wireless communication systems</subject><subject>Wireless communications</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkEFOwzAURC0EEqWw4wCW2BKabzuNs6xKgUpFLADBLnKcHxrk2MV2kLrjDtyQk5CqXc1inkaaR8glpDcAWTZhKROTgguec3FERpAWMgGA92MySqUUiYScn5KzED7TFCAX2Yj4Gb1F3NC5s9_O9LF1Vhk666NDq12N_u_nd2FVZbCm87WyFg1dhNh2aofSR4xrV9PW0qWNaEz7gTbSt9ajwRCG1a7rbav38PM2ROzCOTlplAl4ccgxeb1bvMwfktXT_XI-WyUapIxJ3QDoJs8YFJxVDc8kn4JgomBVroTUPEUmNVN1wYdS5SAzjaxRGRMV1wz5mFztdzfeffUYYvnpej_cCyUHNs2kkIUcqOs9pb0LwWNTbvzwzm9LSMud1XJntTxY5f-FBWud</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Tian, Xinyu</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0009-0005-6694-0585</orcidid></search><sort><creationdate>20240101</creationdate><title>A Deep Convolutional Autoencoder–Enabled Channel Estimation Method in Intelligent Wireless Communication Systems</title><author>Tian, Xinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c188t-df11cf7521932bf35836142492b7a48c30e28c2ad93f35a7185ce2fa524b3c2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Codes</topic><topic>Data transmission</topic><topic>Deep learning</topic><topic>Demodulation</topic><topic>Design</topic><topic>Frequency response</topic><topic>Image compression</topic><topic>Image enhancement</topic><topic>Maximum likelihood method</topic><topic>Network management systems</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Optimization</topic><topic>Receivers &amp; amplifiers</topic><topic>Signal detection</topic><topic>Signal processing</topic><topic>Signal quality</topic><topic>Sparsity</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>System reliability</topic><topic>Weight reduction</topic><topic>Wireless communication systems</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Xinyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Xinyu</au><au>Jiang, Weiwei</au><au>Weiwei Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Convolutional Autoencoder–Enabled Channel Estimation Method in Intelligent Wireless Communication Systems</atitle><jtitle>International journal of intelligent systems</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>Through modeling the characteristics of wireless transmission channels, channel estimation can improve signal detection and demodulation techniques, enhance the spectrum utilization, optimize communication performance, and enhance the quality, reliability, and efficiency of intelligent wireless communication systems. In this paper, we propose a deep convolutional autoencoder–based channel estimation method in intelligent wireless communication systems. At first, the channel time‐frequency response matrix between the transmitter and receiver can be represented as 2D images. Then they are fed into the convolutional autoencoder to learn key channel features. To reduce the structural complexity of the deep learning model and improve its inference efficiency, we adopt the method of removing redundant parameters to achieve model compression. Iterative training and pruning based on stochastic gradient descent (SGD) and weight importance evaluation are alternated to obtain a lightweight deep learning model for channel estimation. Finally, extensive simulation results have verified the effectiveness and superiority of the proposed method.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1155/2024/9343734</doi><orcidid>https://orcid.org/0009-0005-6694-0585</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-8173
ispartof International journal of intelligent systems, 2024-01, Vol.2024 (1)
issn 0884-8173
1098-111X
language eng
recordid cdi_proquest_journals_3126584898
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central UK/Ireland; Wiley Open Access; Alma/SFX Local Collection; ProQuest Central
subjects Algorithms
Codes
Data transmission
Deep learning
Demodulation
Design
Frequency response
Image compression
Image enhancement
Maximum likelihood method
Network management systems
Neural networks
Noise
Optimization
Receivers & amplifiers
Signal detection
Signal processing
Signal quality
Sparsity
Statistical analysis
Statistical methods
System reliability
Weight reduction
Wireless communication systems
Wireless communications
title A Deep Convolutional Autoencoder–Enabled Channel Estimation Method in Intelligent Wireless Communication Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A47%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Convolutional%20Autoencoder%E2%80%93Enabled%20Channel%20Estimation%20Method%20in%20Intelligent%20Wireless%20Communication%20Systems&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Tian,%20Xinyu&rft.date=2024-01-01&rft.volume=2024&rft.issue=1&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1155/2024/9343734&rft_dat=%3Cproquest_cross%3E3126584898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126584898&rft_id=info:pmid/&rfr_iscdi=true