A Deep Convolutional Autoencoder–Enabled Channel Estimation Method in Intelligent Wireless Communication Systems
Through modeling the characteristics of wireless transmission channels, channel estimation can improve signal detection and demodulation techniques, enhance the spectrum utilization, optimize communication performance, and enhance the quality, reliability, and efficiency of intelligent wireless comm...
Gespeichert in:
Veröffentlicht in: | International journal of intelligent systems 2024-01, Vol.2024 (1) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | International journal of intelligent systems |
container_volume | 2024 |
creator | Tian, Xinyu |
description | Through modeling the characteristics of wireless transmission channels, channel estimation can improve signal detection and demodulation techniques, enhance the spectrum utilization, optimize communication performance, and enhance the quality, reliability, and efficiency of intelligent wireless communication systems. In this paper, we propose a deep convolutional autoencoder–based channel estimation method in intelligent wireless communication systems. At first, the channel time‐frequency response matrix between the transmitter and receiver can be represented as 2D images. Then they are fed into the convolutional autoencoder to learn key channel features. To reduce the structural complexity of the deep learning model and improve its inference efficiency, we adopt the method of removing redundant parameters to achieve model compression. Iterative training and pruning based on stochastic gradient descent (SGD) and weight importance evaluation are alternated to obtain a lightweight deep learning model for channel estimation. Finally, extensive simulation results have verified the effectiveness and superiority of the proposed method. |
doi_str_mv | 10.1155/2024/9343734 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126584898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126584898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c188t-df11cf7521932bf35836142492b7a48c30e28c2ad93f35a7185ce2fa524b3c2e3</originalsourceid><addsrcrecordid>eNotkEFOwzAURC0EEqWw4wCW2BKabzuNs6xKgUpFLADBLnKcHxrk2MV2kLrjDtyQk5CqXc1inkaaR8glpDcAWTZhKROTgguec3FERpAWMgGA92MySqUUiYScn5KzED7TFCAX2Yj4Gb1F3NC5s9_O9LF1Vhk666NDq12N_u_nd2FVZbCm87WyFg1dhNh2aofSR4xrV9PW0qWNaEz7gTbSt9ajwRCG1a7rbav38PM2ROzCOTlplAl4ccgxeb1bvMwfktXT_XI-WyUapIxJ3QDoJs8YFJxVDc8kn4JgomBVroTUPEUmNVN1wYdS5SAzjaxRGRMV1wz5mFztdzfeffUYYvnpej_cCyUHNs2kkIUcqOs9pb0LwWNTbvzwzm9LSMud1XJntTxY5f-FBWud</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126584898</pqid></control><display><type>article</type><title>A Deep Convolutional Autoencoder–Enabled Channel Estimation Method in Intelligent Wireless Communication Systems</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central UK/Ireland</source><source>Wiley Open Access</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Tian, Xinyu</creator><contributor>Jiang, Weiwei ; Weiwei Jiang</contributor><creatorcontrib>Tian, Xinyu ; Jiang, Weiwei ; Weiwei Jiang</creatorcontrib><description>Through modeling the characteristics of wireless transmission channels, channel estimation can improve signal detection and demodulation techniques, enhance the spectrum utilization, optimize communication performance, and enhance the quality, reliability, and efficiency of intelligent wireless communication systems. In this paper, we propose a deep convolutional autoencoder–based channel estimation method in intelligent wireless communication systems. At first, the channel time‐frequency response matrix between the transmitter and receiver can be represented as 2D images. Then they are fed into the convolutional autoencoder to learn key channel features. To reduce the structural complexity of the deep learning model and improve its inference efficiency, we adopt the method of removing redundant parameters to achieve model compression. Iterative training and pruning based on stochastic gradient descent (SGD) and weight importance evaluation are alternated to obtain a lightweight deep learning model for channel estimation. Finally, extensive simulation results have verified the effectiveness and superiority of the proposed method.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1155/2024/9343734</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Algorithms ; Codes ; Data transmission ; Deep learning ; Demodulation ; Design ; Frequency response ; Image compression ; Image enhancement ; Maximum likelihood method ; Network management systems ; Neural networks ; Noise ; Optimization ; Receivers & amplifiers ; Signal detection ; Signal processing ; Signal quality ; Sparsity ; Statistical analysis ; Statistical methods ; System reliability ; Weight reduction ; Wireless communication systems ; Wireless communications</subject><ispartof>International journal of intelligent systems, 2024-01, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Xinyu Tian. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c188t-df11cf7521932bf35836142492b7a48c30e28c2ad93f35a7185ce2fa524b3c2e3</cites><orcidid>0009-0005-6694-0585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126584898/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126584898?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33703,33744,34005,34314,43659,43787,43805,43953,44067,64385,64389,72469,74104,74283,74302,74473,74590</link.rule.ids></links><search><contributor>Jiang, Weiwei</contributor><contributor>Weiwei Jiang</contributor><creatorcontrib>Tian, Xinyu</creatorcontrib><title>A Deep Convolutional Autoencoder–Enabled Channel Estimation Method in Intelligent Wireless Communication Systems</title><title>International journal of intelligent systems</title><description>Through modeling the characteristics of wireless transmission channels, channel estimation can improve signal detection and demodulation techniques, enhance the spectrum utilization, optimize communication performance, and enhance the quality, reliability, and efficiency of intelligent wireless communication systems. In this paper, we propose a deep convolutional autoencoder–based channel estimation method in intelligent wireless communication systems. At first, the channel time‐frequency response matrix between the transmitter and receiver can be represented as 2D images. Then they are fed into the convolutional autoencoder to learn key channel features. To reduce the structural complexity of the deep learning model and improve its inference efficiency, we adopt the method of removing redundant parameters to achieve model compression. Iterative training and pruning based on stochastic gradient descent (SGD) and weight importance evaluation are alternated to obtain a lightweight deep learning model for channel estimation. Finally, extensive simulation results have verified the effectiveness and superiority of the proposed method.</description><subject>Algorithms</subject><subject>Codes</subject><subject>Data transmission</subject><subject>Deep learning</subject><subject>Demodulation</subject><subject>Design</subject><subject>Frequency response</subject><subject>Image compression</subject><subject>Image enhancement</subject><subject>Maximum likelihood method</subject><subject>Network management systems</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Optimization</subject><subject>Receivers & amplifiers</subject><subject>Signal detection</subject><subject>Signal processing</subject><subject>Signal quality</subject><subject>Sparsity</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>System reliability</subject><subject>Weight reduction</subject><subject>Wireless communication systems</subject><subject>Wireless communications</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkEFOwzAURC0EEqWw4wCW2BKabzuNs6xKgUpFLADBLnKcHxrk2MV2kLrjDtyQk5CqXc1inkaaR8glpDcAWTZhKROTgguec3FERpAWMgGA92MySqUUiYScn5KzED7TFCAX2Yj4Gb1F3NC5s9_O9LF1Vhk666NDq12N_u_nd2FVZbCm87WyFg1dhNh2aofSR4xrV9PW0qWNaEz7gTbSt9ajwRCG1a7rbav38PM2ROzCOTlplAl4ccgxeb1bvMwfktXT_XI-WyUapIxJ3QDoJs8YFJxVDc8kn4JgomBVroTUPEUmNVN1wYdS5SAzjaxRGRMV1wz5mFztdzfeffUYYvnpej_cCyUHNs2kkIUcqOs9pb0LwWNTbvzwzm9LSMud1XJntTxY5f-FBWud</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Tian, Xinyu</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0009-0005-6694-0585</orcidid></search><sort><creationdate>20240101</creationdate><title>A Deep Convolutional Autoencoder–Enabled Channel Estimation Method in Intelligent Wireless Communication Systems</title><author>Tian, Xinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c188t-df11cf7521932bf35836142492b7a48c30e28c2ad93f35a7185ce2fa524b3c2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Codes</topic><topic>Data transmission</topic><topic>Deep learning</topic><topic>Demodulation</topic><topic>Design</topic><topic>Frequency response</topic><topic>Image compression</topic><topic>Image enhancement</topic><topic>Maximum likelihood method</topic><topic>Network management systems</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Optimization</topic><topic>Receivers & amplifiers</topic><topic>Signal detection</topic><topic>Signal processing</topic><topic>Signal quality</topic><topic>Sparsity</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>System reliability</topic><topic>Weight reduction</topic><topic>Wireless communication systems</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Xinyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Xinyu</au><au>Jiang, Weiwei</au><au>Weiwei Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Convolutional Autoencoder–Enabled Channel Estimation Method in Intelligent Wireless Communication Systems</atitle><jtitle>International journal of intelligent systems</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>Through modeling the characteristics of wireless transmission channels, channel estimation can improve signal detection and demodulation techniques, enhance the spectrum utilization, optimize communication performance, and enhance the quality, reliability, and efficiency of intelligent wireless communication systems. In this paper, we propose a deep convolutional autoencoder–based channel estimation method in intelligent wireless communication systems. At first, the channel time‐frequency response matrix between the transmitter and receiver can be represented as 2D images. Then they are fed into the convolutional autoencoder to learn key channel features. To reduce the structural complexity of the deep learning model and improve its inference efficiency, we adopt the method of removing redundant parameters to achieve model compression. Iterative training and pruning based on stochastic gradient descent (SGD) and weight importance evaluation are alternated to obtain a lightweight deep learning model for channel estimation. Finally, extensive simulation results have verified the effectiveness and superiority of the proposed method.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1155/2024/9343734</doi><orcidid>https://orcid.org/0009-0005-6694-0585</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-8173 |
ispartof | International journal of intelligent systems, 2024-01, Vol.2024 (1) |
issn | 0884-8173 1098-111X |
language | eng |
recordid | cdi_proquest_journals_3126584898 |
source | ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central UK/Ireland; Wiley Open Access; Alma/SFX Local Collection; ProQuest Central |
subjects | Algorithms Codes Data transmission Deep learning Demodulation Design Frequency response Image compression Image enhancement Maximum likelihood method Network management systems Neural networks Noise Optimization Receivers & amplifiers Signal detection Signal processing Signal quality Sparsity Statistical analysis Statistical methods System reliability Weight reduction Wireless communication systems Wireless communications |
title | A Deep Convolutional Autoencoder–Enabled Channel Estimation Method in Intelligent Wireless Communication Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A47%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Convolutional%20Autoencoder%E2%80%93Enabled%20Channel%20Estimation%20Method%20in%20Intelligent%20Wireless%20Communication%20Systems&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Tian,%20Xinyu&rft.date=2024-01-01&rft.volume=2024&rft.issue=1&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1155/2024/9343734&rft_dat=%3Cproquest_cross%3E3126584898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126584898&rft_id=info:pmid/&rfr_iscdi=true |