Toward reliable prediction of CO2 uptake capacity of metal–organic frameworks (MOFs): implementation of white-box machine learning
The burning of fossil fuels is the major cause of the surge in atmospheric CO 2 concentration. The unique properties of Metal–organic frameworks (MOFs) have made them a highly promising and efficient class of materials for gas adsorption projects. In this piece of research, white-box machine learnin...
Gespeichert in:
Veröffentlicht in: | Adsorption : journal of the International Adsorption Society 2024-12, Vol.30 (8), p.1985-2003 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2003 |
---|---|
container_issue | 8 |
container_start_page | 1985 |
container_title | Adsorption : journal of the International Adsorption Society |
container_volume | 30 |
creator | Larestani, Aydin Jafari-Sirizi, Ahmadreza Hadavimoghaddam, Fahimeh Atashrouz, Saeid Nedeljkovic, Dragutin Mohaddespour, Ahmad Hemmati-Sarapardeh, Abdolhossein |
description | The burning of fossil fuels is the major cause of the surge in atmospheric CO
2
concentration. The unique properties of Metal–organic frameworks (MOFs) have made them a highly promising and efficient class of materials for gas adsorption projects. In this piece of research, white-box machine learning algorithms, including gene expression programming (GEP), group method of data handling (GMDH), and genetic programming (GP), are implemented to generate reliable and efficient explicit correlations for estimating CO
2
uptake capacity of MOFs based on the most extensive databank gathered up-to-date containing 6530 data points from 88 different MOFs. The CO
2
uptake capacity is considered a strong function of pressure, temperature, surface area, and pore volume. The results indicated that the GMDH correlation could provide more reliable results by showing total root mean square error (RMSE) and correlation coefficient (R
2
) of 2.77 mmol/g and 0.8496, respectively. Also, the trend analysis reflected that this correlation could precisely detect the physical trend of CO
2
uptake capacity with pressure variations. Moreover, the sensitivity analysis showed the high impact of pressure on the estimated CO
2
uptake capacity values. Based on the sensitivity analysis of the GMDH correlation’s estimations, it can be expected that the CO
2
adsorption capacity of MOFs increases by raising MOFs’ surface area and pore volume and designing the adsorption process at elevated pressures and lower temperatures. The proposed correlation can be simply employed to estimate MOFs’ CO
2
uptake capacity with an acceptable level of confidence using a simple calculator. |
doi_str_mv | 10.1007/s10450-024-00531-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126545879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126545879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-53d18cbbc4bc416a6223b798ee04dcf61c0ed060b43a8fe68c6ab87794f4bac3</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhi1EpS60L9CTJS704HbsJHbCrVoBRaLay96tiTNZDEkc7KwWbhx4g75hn4TAUvVWaaSRRt__j_Qx9kXCNwlgvicJeQECVC4AikwKecAWsjBKlKYwh2wBlapEocF8ZEcp3QJApU22YM_rsMPY8Eidx7ojPkZqvJt8GHho-XKl-Hac8I64wxGdnx5fzz1N2P15-h3iBgfveBuxp12Id4mf_lpdpK9n3PdjRz0NE_7t2t34iUQdHniP7sYPxDvCOPhh84l9aLFL9Pl9H7P1xfl6-VNcry6vlj-uhVMAkyiyRpaurl0-j9SolcpqU5VEkDeu1dIBNaChzjMsW9Kl01iXxlR5m9fosmN2sq8dY7jfUprsbdjGYf5oM6l0kRelqWZK7SkXQ0qRWjtG32N8tBLsq2y7l21n2fZNtpVzKNuH0gwPG4r_qv-TegH5NIUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126545879</pqid></control><display><type>article</type><title>Toward reliable prediction of CO2 uptake capacity of metal–organic frameworks (MOFs): implementation of white-box machine learning</title><source>SpringerLink Journals - AutoHoldings</source><creator>Larestani, Aydin ; Jafari-Sirizi, Ahmadreza ; Hadavimoghaddam, Fahimeh ; Atashrouz, Saeid ; Nedeljkovic, Dragutin ; Mohaddespour, Ahmad ; Hemmati-Sarapardeh, Abdolhossein</creator><creatorcontrib>Larestani, Aydin ; Jafari-Sirizi, Ahmadreza ; Hadavimoghaddam, Fahimeh ; Atashrouz, Saeid ; Nedeljkovic, Dragutin ; Mohaddespour, Ahmad ; Hemmati-Sarapardeh, Abdolhossein</creatorcontrib><description>The burning of fossil fuels is the major cause of the surge in atmospheric CO
2
concentration. The unique properties of Metal–organic frameworks (MOFs) have made them a highly promising and efficient class of materials for gas adsorption projects. In this piece of research, white-box machine learning algorithms, including gene expression programming (GEP), group method of data handling (GMDH), and genetic programming (GP), are implemented to generate reliable and efficient explicit correlations for estimating CO
2
uptake capacity of MOFs based on the most extensive databank gathered up-to-date containing 6530 data points from 88 different MOFs. The CO
2
uptake capacity is considered a strong function of pressure, temperature, surface area, and pore volume. The results indicated that the GMDH correlation could provide more reliable results by showing total root mean square error (RMSE) and correlation coefficient (R
2
) of 2.77 mmol/g and 0.8496, respectively. Also, the trend analysis reflected that this correlation could precisely detect the physical trend of CO
2
uptake capacity with pressure variations. Moreover, the sensitivity analysis showed the high impact of pressure on the estimated CO
2
uptake capacity values. Based on the sensitivity analysis of the GMDH correlation’s estimations, it can be expected that the CO
2
adsorption capacity of MOFs increases by raising MOFs’ surface area and pore volume and designing the adsorption process at elevated pressures and lower temperatures. The proposed correlation can be simply employed to estimate MOFs’ CO
2
uptake capacity with an acceptable level of confidence using a simple calculator.</description><identifier>ISSN: 0929-5607</identifier><identifier>EISSN: 1572-8757</identifier><identifier>DOI: 10.1007/s10450-024-00531-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adsorption ; Carbon dioxide ; Carbon dioxide concentration ; Chemistry ; Chemistry and Materials Science ; Correlation coefficients ; Data points ; Engineering Thermodynamics ; Gene expression ; Genetic algorithms ; Group method of data handling ; Heat and Mass Transfer ; Heat treating ; Impact analysis ; Industrial Chemistry/Chemical Engineering ; Machine learning ; Metal-organic frameworks ; Root-mean-square errors ; Sensitivity analysis ; Surface area ; Surfaces and Interfaces ; Thin Films ; Trend analysis</subject><ispartof>Adsorption : journal of the International Adsorption Society, 2024-12, Vol.30 (8), p.1985-2003</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-53d18cbbc4bc416a6223b798ee04dcf61c0ed060b43a8fe68c6ab87794f4bac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10450-024-00531-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10450-024-00531-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Larestani, Aydin</creatorcontrib><creatorcontrib>Jafari-Sirizi, Ahmadreza</creatorcontrib><creatorcontrib>Hadavimoghaddam, Fahimeh</creatorcontrib><creatorcontrib>Atashrouz, Saeid</creatorcontrib><creatorcontrib>Nedeljkovic, Dragutin</creatorcontrib><creatorcontrib>Mohaddespour, Ahmad</creatorcontrib><creatorcontrib>Hemmati-Sarapardeh, Abdolhossein</creatorcontrib><title>Toward reliable prediction of CO2 uptake capacity of metal–organic frameworks (MOFs): implementation of white-box machine learning</title><title>Adsorption : journal of the International Adsorption Society</title><addtitle>Adsorption</addtitle><description>The burning of fossil fuels is the major cause of the surge in atmospheric CO
2
concentration. The unique properties of Metal–organic frameworks (MOFs) have made them a highly promising and efficient class of materials for gas adsorption projects. In this piece of research, white-box machine learning algorithms, including gene expression programming (GEP), group method of data handling (GMDH), and genetic programming (GP), are implemented to generate reliable and efficient explicit correlations for estimating CO
2
uptake capacity of MOFs based on the most extensive databank gathered up-to-date containing 6530 data points from 88 different MOFs. The CO
2
uptake capacity is considered a strong function of pressure, temperature, surface area, and pore volume. The results indicated that the GMDH correlation could provide more reliable results by showing total root mean square error (RMSE) and correlation coefficient (R
2
) of 2.77 mmol/g and 0.8496, respectively. Also, the trend analysis reflected that this correlation could precisely detect the physical trend of CO
2
uptake capacity with pressure variations. Moreover, the sensitivity analysis showed the high impact of pressure on the estimated CO
2
uptake capacity values. Based on the sensitivity analysis of the GMDH correlation’s estimations, it can be expected that the CO
2
adsorption capacity of MOFs increases by raising MOFs’ surface area and pore volume and designing the adsorption process at elevated pressures and lower temperatures. The proposed correlation can be simply employed to estimate MOFs’ CO
2
uptake capacity with an acceptable level of confidence using a simple calculator.</description><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Correlation coefficients</subject><subject>Data points</subject><subject>Engineering Thermodynamics</subject><subject>Gene expression</subject><subject>Genetic algorithms</subject><subject>Group method of data handling</subject><subject>Heat and Mass Transfer</subject><subject>Heat treating</subject><subject>Impact analysis</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Machine learning</subject><subject>Metal-organic frameworks</subject><subject>Root-mean-square errors</subject><subject>Sensitivity analysis</subject><subject>Surface area</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Trend analysis</subject><issn>0929-5607</issn><issn>1572-8757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhi1EpS60L9CTJS704HbsJHbCrVoBRaLay96tiTNZDEkc7KwWbhx4g75hn4TAUvVWaaSRRt__j_Qx9kXCNwlgvicJeQECVC4AikwKecAWsjBKlKYwh2wBlapEocF8ZEcp3QJApU22YM_rsMPY8Eidx7ojPkZqvJt8GHho-XKl-Hac8I64wxGdnx5fzz1N2P15-h3iBgfveBuxp12Id4mf_lpdpK9n3PdjRz0NE_7t2t34iUQdHniP7sYPxDvCOPhh84l9aLFL9Pl9H7P1xfl6-VNcry6vlj-uhVMAkyiyRpaurl0-j9SolcpqU5VEkDeu1dIBNaChzjMsW9Kl01iXxlR5m9fosmN2sq8dY7jfUprsbdjGYf5oM6l0kRelqWZK7SkXQ0qRWjtG32N8tBLsq2y7l21n2fZNtpVzKNuH0gwPG4r_qv-TegH5NIUM</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Larestani, Aydin</creator><creator>Jafari-Sirizi, Ahmadreza</creator><creator>Hadavimoghaddam, Fahimeh</creator><creator>Atashrouz, Saeid</creator><creator>Nedeljkovic, Dragutin</creator><creator>Mohaddespour, Ahmad</creator><creator>Hemmati-Sarapardeh, Abdolhossein</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Toward reliable prediction of CO2 uptake capacity of metal–organic frameworks (MOFs): implementation of white-box machine learning</title><author>Larestani, Aydin ; Jafari-Sirizi, Ahmadreza ; Hadavimoghaddam, Fahimeh ; Atashrouz, Saeid ; Nedeljkovic, Dragutin ; Mohaddespour, Ahmad ; Hemmati-Sarapardeh, Abdolhossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-53d18cbbc4bc416a6223b798ee04dcf61c0ed060b43a8fe68c6ab87794f4bac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Correlation coefficients</topic><topic>Data points</topic><topic>Engineering Thermodynamics</topic><topic>Gene expression</topic><topic>Genetic algorithms</topic><topic>Group method of data handling</topic><topic>Heat and Mass Transfer</topic><topic>Heat treating</topic><topic>Impact analysis</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Machine learning</topic><topic>Metal-organic frameworks</topic><topic>Root-mean-square errors</topic><topic>Sensitivity analysis</topic><topic>Surface area</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Trend analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larestani, Aydin</creatorcontrib><creatorcontrib>Jafari-Sirizi, Ahmadreza</creatorcontrib><creatorcontrib>Hadavimoghaddam, Fahimeh</creatorcontrib><creatorcontrib>Atashrouz, Saeid</creatorcontrib><creatorcontrib>Nedeljkovic, Dragutin</creatorcontrib><creatorcontrib>Mohaddespour, Ahmad</creatorcontrib><creatorcontrib>Hemmati-Sarapardeh, Abdolhossein</creatorcontrib><collection>CrossRef</collection><jtitle>Adsorption : journal of the International Adsorption Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larestani, Aydin</au><au>Jafari-Sirizi, Ahmadreza</au><au>Hadavimoghaddam, Fahimeh</au><au>Atashrouz, Saeid</au><au>Nedeljkovic, Dragutin</au><au>Mohaddespour, Ahmad</au><au>Hemmati-Sarapardeh, Abdolhossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward reliable prediction of CO2 uptake capacity of metal–organic frameworks (MOFs): implementation of white-box machine learning</atitle><jtitle>Adsorption : journal of the International Adsorption Society</jtitle><stitle>Adsorption</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>30</volume><issue>8</issue><spage>1985</spage><epage>2003</epage><pages>1985-2003</pages><issn>0929-5607</issn><eissn>1572-8757</eissn><abstract>The burning of fossil fuels is the major cause of the surge in atmospheric CO
2
concentration. The unique properties of Metal–organic frameworks (MOFs) have made them a highly promising and efficient class of materials for gas adsorption projects. In this piece of research, white-box machine learning algorithms, including gene expression programming (GEP), group method of data handling (GMDH), and genetic programming (GP), are implemented to generate reliable and efficient explicit correlations for estimating CO
2
uptake capacity of MOFs based on the most extensive databank gathered up-to-date containing 6530 data points from 88 different MOFs. The CO
2
uptake capacity is considered a strong function of pressure, temperature, surface area, and pore volume. The results indicated that the GMDH correlation could provide more reliable results by showing total root mean square error (RMSE) and correlation coefficient (R
2
) of 2.77 mmol/g and 0.8496, respectively. Also, the trend analysis reflected that this correlation could precisely detect the physical trend of CO
2
uptake capacity with pressure variations. Moreover, the sensitivity analysis showed the high impact of pressure on the estimated CO
2
uptake capacity values. Based on the sensitivity analysis of the GMDH correlation’s estimations, it can be expected that the CO
2
adsorption capacity of MOFs increases by raising MOFs’ surface area and pore volume and designing the adsorption process at elevated pressures and lower temperatures. The proposed correlation can be simply employed to estimate MOFs’ CO
2
uptake capacity with an acceptable level of confidence using a simple calculator.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10450-024-00531-1</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5607 |
ispartof | Adsorption : journal of the International Adsorption Society, 2024-12, Vol.30 (8), p.1985-2003 |
issn | 0929-5607 1572-8757 |
language | eng |
recordid | cdi_proquest_journals_3126545879 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adsorption Carbon dioxide Carbon dioxide concentration Chemistry Chemistry and Materials Science Correlation coefficients Data points Engineering Thermodynamics Gene expression Genetic algorithms Group method of data handling Heat and Mass Transfer Heat treating Impact analysis Industrial Chemistry/Chemical Engineering Machine learning Metal-organic frameworks Root-mean-square errors Sensitivity analysis Surface area Surfaces and Interfaces Thin Films Trend analysis |
title | Toward reliable prediction of CO2 uptake capacity of metal–organic frameworks (MOFs): implementation of white-box machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20reliable%20prediction%20of%20CO2%20uptake%20capacity%20of%20metal%E2%80%93organic%20frameworks%20(MOFs):%20implementation%20of%20white-box%20machine%20learning&rft.jtitle=Adsorption%20:%20journal%20of%20the%20International%20Adsorption%20Society&rft.au=Larestani,%20Aydin&rft.date=2024-12-01&rft.volume=30&rft.issue=8&rft.spage=1985&rft.epage=2003&rft.pages=1985-2003&rft.issn=0929-5607&rft.eissn=1572-8757&rft_id=info:doi/10.1007/s10450-024-00531-1&rft_dat=%3Cproquest_cross%3E3126545879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126545879&rft_id=info:pmid/&rfr_iscdi=true |