Image-based chip detection during turning

This study proposes a method to analyze chip formation using camera surveillance to enhance safety and efficiency in machine operations. The process involved the face and straight turning of a workpiece under the observation of a camera strategically placed within the workspace. The suggested algori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2024-12, Vol.135 (7-8), p.3219-3227
Hauptverfasser: Filep, Tamás, Andó, Mátyás, Szekeres, Béla J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3227
container_issue 7-8
container_start_page 3219
container_title International journal of advanced manufacturing technology
container_volume 135
creator Filep, Tamás
Andó, Mátyás
Szekeres, Béla J.
description This study proposes a method to analyze chip formation using camera surveillance to enhance safety and efficiency in machine operations. The process involved the face and straight turning of a workpiece under the observation of a camera strategically placed within the workspace. The suggested algorithm carries out initial image preprocessing and edge detection, followed by background subtraction to isolate dynamic elements and filtering based on the size of the objects. Pre-determined masks are applied to eliminate overlaps with existing workspace objects, based on the tool’s trajectory. The research validates that the applied technique effectively recognizes chips in both face and straight turning. Specific filtering techniques improve the algorithm’s capability to detect even smaller chips, and it substantially reduces false alarms, laying the groundwork for long, continuous chip detection systems.
doi_str_mv 10.1007/s00170-024-14637-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126437828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126437828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-5a0e7b79e511cbbf96152585317e2ca22d466f9e359cea468d229d633ccc55633</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyRmBgMPr5nRBWUSpVYYLYc56Skok2wE6m8PS5BYmP6l_9yzkfINbA7YMzcJ8bAMMq4pCC1MPRwQmYghaCCgTolM8a1pcJoe04uUtpmuwZtZ-R2tfMbpJVPWBfhve2LGgcMQ9vti3qM7X5TDGPcZ70kZ43_SHj1q3Py9vT4unim65flavGwpoFLOVDlGZrKlKgAQlU1pQbFlVUCDPLgOa-l1k2JQpUBvdS25rystRAhBKWyzsnN1NvH7nPENLhtly_Ik04A11IYy2128ckVYpdSxMb1sd35-OWAuSMSNyFxGYn7QeIOOSSmUOqPn2H8q_4n9Q2TFmKv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126437828</pqid></control><display><type>article</type><title>Image-based chip detection during turning</title><source>SpringerNature Journals</source><creator>Filep, Tamás ; Andó, Mátyás ; Szekeres, Béla J.</creator><creatorcontrib>Filep, Tamás ; Andó, Mátyás ; Szekeres, Béla J.</creatorcontrib><description>This study proposes a method to analyze chip formation using camera surveillance to enhance safety and efficiency in machine operations. The process involved the face and straight turning of a workpiece under the observation of a camera strategically placed within the workspace. The suggested algorithm carries out initial image preprocessing and edge detection, followed by background subtraction to isolate dynamic elements and filtering based on the size of the objects. Pre-determined masks are applied to eliminate overlaps with existing workspace objects, based on the tool’s trajectory. The research validates that the applied technique effectively recognizes chips in both face and straight turning. Specific filtering techniques improve the algorithm’s capability to detect even smaller chips, and it substantially reduces false alarms, laying the groundwork for long, continuous chip detection systems.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-024-14637-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Advanced manufacturing technologies ; Algorithms ; CAE) and Design ; Cameras ; Chip formation ; Computer-Aided Engineering (CAD ; Edge detection ; Efficiency ; Engineering ; False alarms ; Image enhancement ; Image filters ; Industrial and Production Engineering ; Manufacturing ; Mechanical Engineering ; Media Management ; Methods ; Original Article ; Workpieces</subject><ispartof>International journal of advanced manufacturing technology, 2024-12, Vol.135 (7-8), p.3219-3227</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-5a0e7b79e511cbbf96152585317e2ca22d466f9e359cea468d229d633ccc55633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-024-14637-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-024-14637-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Filep, Tamás</creatorcontrib><creatorcontrib>Andó, Mátyás</creatorcontrib><creatorcontrib>Szekeres, Béla J.</creatorcontrib><title>Image-based chip detection during turning</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This study proposes a method to analyze chip formation using camera surveillance to enhance safety and efficiency in machine operations. The process involved the face and straight turning of a workpiece under the observation of a camera strategically placed within the workspace. The suggested algorithm carries out initial image preprocessing and edge detection, followed by background subtraction to isolate dynamic elements and filtering based on the size of the objects. Pre-determined masks are applied to eliminate overlaps with existing workspace objects, based on the tool’s trajectory. The research validates that the applied technique effectively recognizes chips in both face and straight turning. Specific filtering techniques improve the algorithm’s capability to detect even smaller chips, and it substantially reduces false alarms, laying the groundwork for long, continuous chip detection systems.</description><subject>Advanced manufacturing technologies</subject><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Cameras</subject><subject>Chip formation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Edge detection</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>False alarms</subject><subject>Image enhancement</subject><subject>Image filters</subject><subject>Industrial and Production Engineering</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Methods</subject><subject>Original Article</subject><subject>Workpieces</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kLtOwzAUhi0EEqXwAkyRmBgMPr5nRBWUSpVYYLYc56Skok2wE6m8PS5BYmP6l_9yzkfINbA7YMzcJ8bAMMq4pCC1MPRwQmYghaCCgTolM8a1pcJoe04uUtpmuwZtZ-R2tfMbpJVPWBfhve2LGgcMQ9vti3qM7X5TDGPcZ70kZ43_SHj1q3Py9vT4unim65flavGwpoFLOVDlGZrKlKgAQlU1pQbFlVUCDPLgOa-l1k2JQpUBvdS25rystRAhBKWyzsnN1NvH7nPENLhtly_Ik04A11IYy2128ckVYpdSxMb1sd35-OWAuSMSNyFxGYn7QeIOOSSmUOqPn2H8q_4n9Q2TFmKv</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Filep, Tamás</creator><creator>Andó, Mátyás</creator><creator>Szekeres, Béla J.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Image-based chip detection during turning</title><author>Filep, Tamás ; Andó, Mátyás ; Szekeres, Béla J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-5a0e7b79e511cbbf96152585317e2ca22d466f9e359cea468d229d633ccc55633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advanced manufacturing technologies</topic><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Cameras</topic><topic>Chip formation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Edge detection</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>False alarms</topic><topic>Image enhancement</topic><topic>Image filters</topic><topic>Industrial and Production Engineering</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Methods</topic><topic>Original Article</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filep, Tamás</creatorcontrib><creatorcontrib>Andó, Mátyás</creatorcontrib><creatorcontrib>Szekeres, Béla J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filep, Tamás</au><au>Andó, Mátyás</au><au>Szekeres, Béla J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image-based chip detection during turning</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>135</volume><issue>7-8</issue><spage>3219</spage><epage>3227</epage><pages>3219-3227</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This study proposes a method to analyze chip formation using camera surveillance to enhance safety and efficiency in machine operations. The process involved the face and straight turning of a workpiece under the observation of a camera strategically placed within the workspace. The suggested algorithm carries out initial image preprocessing and edge detection, followed by background subtraction to isolate dynamic elements and filtering based on the size of the objects. Pre-determined masks are applied to eliminate overlaps with existing workspace objects, based on the tool’s trajectory. The research validates that the applied technique effectively recognizes chips in both face and straight turning. Specific filtering techniques improve the algorithm’s capability to detect even smaller chips, and it substantially reduces false alarms, laying the groundwork for long, continuous chip detection systems.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-024-14637-x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2024-12, Vol.135 (7-8), p.3219-3227
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_3126437828
source SpringerNature Journals
subjects Advanced manufacturing technologies
Algorithms
CAE) and Design
Cameras
Chip formation
Computer-Aided Engineering (CAD
Edge detection
Efficiency
Engineering
False alarms
Image enhancement
Image filters
Industrial and Production Engineering
Manufacturing
Mechanical Engineering
Media Management
Methods
Original Article
Workpieces
title Image-based chip detection during turning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image-based%20chip%20detection%20during%20turning&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Filep,%20Tam%C3%A1s&rft.date=2024-12-01&rft.volume=135&rft.issue=7-8&rft.spage=3219&rft.epage=3227&rft.pages=3219-3227&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-024-14637-x&rft_dat=%3Cproquest_cross%3E3126437828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126437828&rft_id=info:pmid/&rfr_iscdi=true