Lifespan estimates for semilinear damped wave equation in a two-dimensional exterior domain

Lifespan estimates for semilinear damped wave equations of the form ∂ t 2 u - Δ u + ∂ t u = | u | p in a two dimensional exterior domain endowed with the Dirichlet boundary condition are dealt with. For the critical case of the semilinear heat equation ∂ t v - Δ v = v 2 with the Dirichlet boundary c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2024-12, Vol.63 (9), Article 240
Hauptverfasser: Ikeda, Masahiro, Sobajima, Motohiro, Taniguchi, Koichi, Wakasugi, Yuta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 63
creator Ikeda, Masahiro
Sobajima, Motohiro
Taniguchi, Koichi
Wakasugi, Yuta
description Lifespan estimates for semilinear damped wave equations of the form ∂ t 2 u - Δ u + ∂ t u = | u | p in a two dimensional exterior domain endowed with the Dirichlet boundary condition are dealt with. For the critical case of the semilinear heat equation ∂ t v - Δ v = v 2 with the Dirichlet boundary condition and the initial condition v ( 0 ) = ε f , the corresponding lifespan can be estimated from below and above by exp ( exp ( C ε - 1 ) ) with different constants C . This paper clarifies that the same estimates hold even for the critical semilinear damped wave equation in the exterior of the unit ball under the restriction of radial symmetry. To achieve this result, a new technique to control L 1 -type norm and a new Gagliardo–Nirenberg type estimate with logarithmic weight are introduced.
doi_str_mv 10.1007/s00526-024-02847-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126410716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126410716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-3aec25b64051c95df11b2feba15cfd3339456788454221895ed9a2db5ff7c4c63</originalsourceid><addsrcrecordid>eNp9kElLBDEQhYMoOI7-AU8Bz9GsvRxlcIMBL3ryENJJRTJML5P02PrvzdiCNw9FQfHeo96H0CWj14zS8iZRqnhBKJd5KlmS6QgtmBSc0EqoY7SgtZSEF0V9is5S2lDKVMXlAr2tg4c0mA5DGkNrRkjY9xEnaMM2dGAidqYdwOHJfACG3d6Moe9w6LDB49QTF1roUj6ZLYbPEWLIbte3JnTn6MSbbYKL371Er_d3L6tHsn5-eFrdronlUo5EGLBcNYWkitlaOc9Ywz00hinrnRCilqooq0oqyTmragWuNtw1yvvSSluIJbqac4fY7_a5h970-5gfSlowXkhGS3ZQ8VllY59SBK-HmAvHL82oPkDUM0SdIeofiHrKJjGbUhZ37xD_ov9xfQMAMHZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126410716</pqid></control><display><type>article</type><title>Lifespan estimates for semilinear damped wave equation in a two-dimensional exterior domain</title><source>SpringerLink (Online service)</source><creator>Ikeda, Masahiro ; Sobajima, Motohiro ; Taniguchi, Koichi ; Wakasugi, Yuta</creator><creatorcontrib>Ikeda, Masahiro ; Sobajima, Motohiro ; Taniguchi, Koichi ; Wakasugi, Yuta</creatorcontrib><description>Lifespan estimates for semilinear damped wave equations of the form ∂ t 2 u - Δ u + ∂ t u = | u | p in a two dimensional exterior domain endowed with the Dirichlet boundary condition are dealt with. For the critical case of the semilinear heat equation ∂ t v - Δ v = v 2 with the Dirichlet boundary condition and the initial condition v ( 0 ) = ε f , the corresponding lifespan can be estimated from below and above by exp ( exp ( C ε - 1 ) ) with different constants C . This paper clarifies that the same estimates hold even for the critical semilinear damped wave equation in the exterior of the unit ball under the restriction of radial symmetry. To achieve this result, a new technique to control L 1 -type norm and a new Gagliardo–Nirenberg type estimate with logarithmic weight are introduced.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-024-02847-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Boundary conditions ; Calculus of Variations and Optimal Control; Optimization ; Control ; Estimates ; Life span ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Systems Theory ; Theoretical ; Thermodynamics ; Wave equations</subject><ispartof>Calculus of variations and partial differential equations, 2024-12, Vol.63 (9), Article 240</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-3aec25b64051c95df11b2feba15cfd3339456788454221895ed9a2db5ff7c4c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-024-02847-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-024-02847-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Ikeda, Masahiro</creatorcontrib><creatorcontrib>Sobajima, Motohiro</creatorcontrib><creatorcontrib>Taniguchi, Koichi</creatorcontrib><creatorcontrib>Wakasugi, Yuta</creatorcontrib><title>Lifespan estimates for semilinear damped wave equation in a two-dimensional exterior domain</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>Lifespan estimates for semilinear damped wave equations of the form ∂ t 2 u - Δ u + ∂ t u = | u | p in a two dimensional exterior domain endowed with the Dirichlet boundary condition are dealt with. For the critical case of the semilinear heat equation ∂ t v - Δ v = v 2 with the Dirichlet boundary condition and the initial condition v ( 0 ) = ε f , the corresponding lifespan can be estimated from below and above by exp ( exp ( C ε - 1 ) ) with different constants C . This paper clarifies that the same estimates hold even for the critical semilinear damped wave equation in the exterior of the unit ball under the restriction of radial symmetry. To achieve this result, a new technique to control L 1 -type norm and a new Gagliardo–Nirenberg type estimate with logarithmic weight are introduced.</description><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Estimates</subject><subject>Life span</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Systems Theory</subject><subject>Theoretical</subject><subject>Thermodynamics</subject><subject>Wave equations</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kElLBDEQhYMoOI7-AU8Bz9GsvRxlcIMBL3ryENJJRTJML5P02PrvzdiCNw9FQfHeo96H0CWj14zS8iZRqnhBKJd5KlmS6QgtmBSc0EqoY7SgtZSEF0V9is5S2lDKVMXlAr2tg4c0mA5DGkNrRkjY9xEnaMM2dGAidqYdwOHJfACG3d6Moe9w6LDB49QTF1roUj6ZLYbPEWLIbte3JnTn6MSbbYKL371Er_d3L6tHsn5-eFrdronlUo5EGLBcNYWkitlaOc9Ywz00hinrnRCilqooq0oqyTmragWuNtw1yvvSSluIJbqac4fY7_a5h970-5gfSlowXkhGS3ZQ8VllY59SBK-HmAvHL82oPkDUM0SdIeofiHrKJjGbUhZ37xD_ov9xfQMAMHZM</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Ikeda, Masahiro</creator><creator>Sobajima, Motohiro</creator><creator>Taniguchi, Koichi</creator><creator>Wakasugi, Yuta</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241201</creationdate><title>Lifespan estimates for semilinear damped wave equation in a two-dimensional exterior domain</title><author>Ikeda, Masahiro ; Sobajima, Motohiro ; Taniguchi, Koichi ; Wakasugi, Yuta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-3aec25b64051c95df11b2feba15cfd3339456788454221895ed9a2db5ff7c4c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Estimates</topic><topic>Life span</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Systems Theory</topic><topic>Theoretical</topic><topic>Thermodynamics</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikeda, Masahiro</creatorcontrib><creatorcontrib>Sobajima, Motohiro</creatorcontrib><creatorcontrib>Taniguchi, Koichi</creatorcontrib><creatorcontrib>Wakasugi, Yuta</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikeda, Masahiro</au><au>Sobajima, Motohiro</au><au>Taniguchi, Koichi</au><au>Wakasugi, Yuta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lifespan estimates for semilinear damped wave equation in a two-dimensional exterior domain</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>63</volume><issue>9</issue><artnum>240</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>Lifespan estimates for semilinear damped wave equations of the form ∂ t 2 u - Δ u + ∂ t u = | u | p in a two dimensional exterior domain endowed with the Dirichlet boundary condition are dealt with. For the critical case of the semilinear heat equation ∂ t v - Δ v = v 2 with the Dirichlet boundary condition and the initial condition v ( 0 ) = ε f , the corresponding lifespan can be estimated from below and above by exp ( exp ( C ε - 1 ) ) with different constants C . This paper clarifies that the same estimates hold even for the critical semilinear damped wave equation in the exterior of the unit ball under the restriction of radial symmetry. To achieve this result, a new technique to control L 1 -type norm and a new Gagliardo–Nirenberg type estimate with logarithmic weight are introduced.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-024-02847-w</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2024-12, Vol.63 (9), Article 240
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_3126410716
source SpringerLink (Online service)
subjects Analysis
Boundary conditions
Calculus of Variations and Optimal Control
Optimization
Control
Estimates
Life span
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Systems Theory
Theoretical
Thermodynamics
Wave equations
title Lifespan estimates for semilinear damped wave equation in a two-dimensional exterior domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lifespan%20estimates%20for%20semilinear%20damped%20wave%20equation%20in%20a%20two-dimensional%20exterior%20domain&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Ikeda,%20Masahiro&rft.date=2024-12-01&rft.volume=63&rft.issue=9&rft.artnum=240&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-024-02847-w&rft_dat=%3Cproquest_cross%3E3126410716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126410716&rft_id=info:pmid/&rfr_iscdi=true