Lifespan estimates for semilinear damped wave equation in a two-dimensional exterior domain
Lifespan estimates for semilinear damped wave equations of the form ∂ t 2 u - Δ u + ∂ t u = | u | p in a two dimensional exterior domain endowed with the Dirichlet boundary condition are dealt with. For the critical case of the semilinear heat equation ∂ t v - Δ v = v 2 with the Dirichlet boundary c...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2024-12, Vol.63 (9), Article 240 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lifespan estimates for semilinear damped wave equations of the form
∂
t
2
u
-
Δ
u
+
∂
t
u
=
|
u
|
p
in a two dimensional exterior domain endowed with the Dirichlet boundary condition are dealt with. For the critical case of the semilinear heat equation
∂
t
v
-
Δ
v
=
v
2
with the Dirichlet boundary condition and the initial condition
v
(
0
)
=
ε
f
, the corresponding lifespan can be estimated from below and above by
exp
(
exp
(
C
ε
-
1
)
)
with different constants
C
. This paper clarifies that the same estimates hold even for the critical semilinear damped wave equation in the exterior of the unit ball under the restriction of radial symmetry. To achieve this result, a new technique to control
L
1
-type norm and a new Gagliardo–Nirenberg type estimate with logarithmic weight are introduced. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-024-02847-w |