Using machine learning to detect network intrusions in industrial control systems: a survey

Industrial control systems (ICS) are vital parts of the physical infrastructure for many industrial assets, such as oil and gas fields, water stations, and power generation plants. Inadequate protection of such critical assets may lead to disruption of vital services and substantial monetary losses....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of information security 2025-02, Vol.24 (1), p.20, Article 20
Hauptverfasser: Termanini, A., Al-Abri, D., Bourdoucen, H., Al Maashri, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 20
container_title International journal of information security
container_volume 24
creator Termanini, A.
Al-Abri, D.
Bourdoucen, H.
Al Maashri, A.
description Industrial control systems (ICS) are vital parts of the physical infrastructure for many industrial assets, such as oil and gas fields, water stations, and power generation plants. Inadequate protection of such critical assets may lead to disruption of vital services and substantial monetary losses. Therefore, the safety of these assets is prioritized as national security. Operational technology networks have a unique nature and different requirements than conventional enterprise networks as they seek tailored security solutions to detect and prevent cyberattacks on such attractive targets. Motivated by a necessary need from industry and academia, this paper aims to present a broad survey of the research works related to developing Intrusion Detection Systems in ICS networks focusing on using recent machine learning techniques. A proposed review methodology is presented and applied to the relevant selected literature. The paper offers a comparative analysis to provide better insights into this domain, where it identifies several unresolved challenges that present intriguing research prospects for the industry and academic community.
doi_str_mv 10.1007/s10207-024-00916-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126185746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126185746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-fa70657fd25aeaf57db04ad4194101c875d84a7b098e9b412b53c20b6144934d3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9VJmjStN1n8Bwte3JOHkLbp2rXbrJlUd7-9WSt6EwZmmPm9N_AIOWdwyQDUFTLgoBLgIgEoWJZsD8iEZUwmkis4_J0zfkxOEFcAnEVuQl4W2PZLujbVa9tb2lnj-_0iOFrbYKtAexs-nX-jbR_8gK3rMY6x6gGDb01HKxcvrqO4w2DXeE0NxcF_2N0pOWpMh_bsp0_J4u72efaQzJ_uH2c386TiACFpjIJMqqbm0ljTSFWXIEwtWCEYsCpXss6FUSUUuS1KwXgp06gsMyZEkYo6nZKL0Xfj3ftgMeiVG3wfX-qU8YzlUoksUnykKu8QvW30xrdr43eagd6HqMcQdQxRf4eot1GUjiKMcL-0_s_6H9UX-wF2Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126185746</pqid></control><display><type>article</type><title>Using machine learning to detect network intrusions in industrial control systems: a survey</title><source>Springer Nature - Complete Springer Journals</source><creator>Termanini, A. ; Al-Abri, D. ; Bourdoucen, H. ; Al Maashri, A.</creator><creatorcontrib>Termanini, A. ; Al-Abri, D. ; Bourdoucen, H. ; Al Maashri, A.</creatorcontrib><description>Industrial control systems (ICS) are vital parts of the physical infrastructure for many industrial assets, such as oil and gas fields, water stations, and power generation plants. Inadequate protection of such critical assets may lead to disruption of vital services and substantial monetary losses. Therefore, the safety of these assets is prioritized as national security. Operational technology networks have a unique nature and different requirements than conventional enterprise networks as they seek tailored security solutions to detect and prevent cyberattacks on such attractive targets. Motivated by a necessary need from industry and academia, this paper aims to present a broad survey of the research works related to developing Intrusion Detection Systems in ICS networks focusing on using recent machine learning techniques. A proposed review methodology is presented and applied to the relevant selected literature. The paper offers a comparative analysis to provide better insights into this domain, where it identifies several unresolved challenges that present intriguing research prospects for the industry and academic community.</description><identifier>ISSN: 1615-5262</identifier><identifier>EISSN: 1615-5270</identifier><identifier>DOI: 10.1007/s10207-024-00916-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Coding and Information Theory ; Communications Engineering ; Computer Communication Networks ; Computer Science ; Control systems ; Cryptology ; Industrial development ; Industrial electronics ; Intrusion detection systems ; Machine learning ; Management of Computing and Information Systems ; National security ; Networks ; Operating Systems ; Survey ; Target detection</subject><ispartof>International journal of information security, 2025-02, Vol.24 (1), p.20, Article 20</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-fa70657fd25aeaf57db04ad4194101c875d84a7b098e9b412b53c20b6144934d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10207-024-00916-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10207-024-00916-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Termanini, A.</creatorcontrib><creatorcontrib>Al-Abri, D.</creatorcontrib><creatorcontrib>Bourdoucen, H.</creatorcontrib><creatorcontrib>Al Maashri, A.</creatorcontrib><title>Using machine learning to detect network intrusions in industrial control systems: a survey</title><title>International journal of information security</title><addtitle>Int. J. Inf. Secur</addtitle><description>Industrial control systems (ICS) are vital parts of the physical infrastructure for many industrial assets, such as oil and gas fields, water stations, and power generation plants. Inadequate protection of such critical assets may lead to disruption of vital services and substantial monetary losses. Therefore, the safety of these assets is prioritized as national security. Operational technology networks have a unique nature and different requirements than conventional enterprise networks as they seek tailored security solutions to detect and prevent cyberattacks on such attractive targets. Motivated by a necessary need from industry and academia, this paper aims to present a broad survey of the research works related to developing Intrusion Detection Systems in ICS networks focusing on using recent machine learning techniques. A proposed review methodology is presented and applied to the relevant selected literature. The paper offers a comparative analysis to provide better insights into this domain, where it identifies several unresolved challenges that present intriguing research prospects for the industry and academic community.</description><subject>Coding and Information Theory</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Control systems</subject><subject>Cryptology</subject><subject>Industrial development</subject><subject>Industrial electronics</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>Management of Computing and Information Systems</subject><subject>National security</subject><subject>Networks</subject><subject>Operating Systems</subject><subject>Survey</subject><subject>Target detection</subject><issn>1615-5262</issn><issn>1615-5270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9VJmjStN1n8Bwte3JOHkLbp2rXbrJlUd7-9WSt6EwZmmPm9N_AIOWdwyQDUFTLgoBLgIgEoWJZsD8iEZUwmkis4_J0zfkxOEFcAnEVuQl4W2PZLujbVa9tb2lnj-_0iOFrbYKtAexs-nX-jbR_8gK3rMY6x6gGDb01HKxcvrqO4w2DXeE0NxcF_2N0pOWpMh_bsp0_J4u72efaQzJ_uH2c386TiACFpjIJMqqbm0ljTSFWXIEwtWCEYsCpXss6FUSUUuS1KwXgp06gsMyZEkYo6nZKL0Xfj3ftgMeiVG3wfX-qU8YzlUoksUnykKu8QvW30xrdr43eagd6HqMcQdQxRf4eot1GUjiKMcL-0_s_6H9UX-wF2Dw</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Termanini, A.</creator><creator>Al-Abri, D.</creator><creator>Bourdoucen, H.</creator><creator>Al Maashri, A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K7.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20250201</creationdate><title>Using machine learning to detect network intrusions in industrial control systems: a survey</title><author>Termanini, A. ; Al-Abri, D. ; Bourdoucen, H. ; Al Maashri, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-fa70657fd25aeaf57db04ad4194101c875d84a7b098e9b412b53c20b6144934d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Coding and Information Theory</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Control systems</topic><topic>Cryptology</topic><topic>Industrial development</topic><topic>Industrial electronics</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>Management of Computing and Information Systems</topic><topic>National security</topic><topic>Networks</topic><topic>Operating Systems</topic><topic>Survey</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Termanini, A.</creatorcontrib><creatorcontrib>Al-Abri, D.</creatorcontrib><creatorcontrib>Bourdoucen, H.</creatorcontrib><creatorcontrib>Al Maashri, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of information security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Termanini, A.</au><au>Al-Abri, D.</au><au>Bourdoucen, H.</au><au>Al Maashri, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using machine learning to detect network intrusions in industrial control systems: a survey</atitle><jtitle>International journal of information security</jtitle><stitle>Int. J. Inf. Secur</stitle><date>2025-02-01</date><risdate>2025</risdate><volume>24</volume><issue>1</issue><spage>20</spage><pages>20-</pages><artnum>20</artnum><issn>1615-5262</issn><eissn>1615-5270</eissn><abstract>Industrial control systems (ICS) are vital parts of the physical infrastructure for many industrial assets, such as oil and gas fields, water stations, and power generation plants. Inadequate protection of such critical assets may lead to disruption of vital services and substantial monetary losses. Therefore, the safety of these assets is prioritized as national security. Operational technology networks have a unique nature and different requirements than conventional enterprise networks as they seek tailored security solutions to detect and prevent cyberattacks on such attractive targets. Motivated by a necessary need from industry and academia, this paper aims to present a broad survey of the research works related to developing Intrusion Detection Systems in ICS networks focusing on using recent machine learning techniques. A proposed review methodology is presented and applied to the relevant selected literature. The paper offers a comparative analysis to provide better insights into this domain, where it identifies several unresolved challenges that present intriguing research prospects for the industry and academic community.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10207-024-00916-x</doi></addata></record>
fulltext fulltext
identifier ISSN: 1615-5262
ispartof International journal of information security, 2025-02, Vol.24 (1), p.20, Article 20
issn 1615-5262
1615-5270
language eng
recordid cdi_proquest_journals_3126185746
source Springer Nature - Complete Springer Journals
subjects Coding and Information Theory
Communications Engineering
Computer Communication Networks
Computer Science
Control systems
Cryptology
Industrial development
Industrial electronics
Intrusion detection systems
Machine learning
Management of Computing and Information Systems
National security
Networks
Operating Systems
Survey
Target detection
title Using machine learning to detect network intrusions in industrial control systems: a survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20machine%20learning%20to%20detect%20network%20intrusions%20in%20industrial%20control%20systems:%20a%20survey&rft.jtitle=International%20journal%20of%20information%20security&rft.au=Termanini,%20A.&rft.date=2025-02-01&rft.volume=24&rft.issue=1&rft.spage=20&rft.pages=20-&rft.artnum=20&rft.issn=1615-5262&rft.eissn=1615-5270&rft_id=info:doi/10.1007/s10207-024-00916-x&rft_dat=%3Cproquest_cross%3E3126185746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126185746&rft_id=info:pmid/&rfr_iscdi=true