Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks
Modern AI agents, driven by advances in large foundation models, promise to enhance our productivity and transform our lives by augmenting our knowledge and capabilities. To achieve this vision, AI agents must effectively plan, perform multi-step reasoning and actions, respond to novel observations,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fourney, Adam Bansal, Gagan Mozannar, Hussein Tan, Cheng Salinas, Eduardo Erkang Zhu Niedtner, Friederike Proebsting, Grace Griffin Bassman Gerrits, Jack Alber, Jacob Chang, Peter Loynd, Ricky West, Robert Dibia, Victor Awadallah, Ahmed Kamar, Ece Hosn, Rafah Amershi, Saleema |
description | Modern AI agents, driven by advances in large foundation models, promise to enhance our productivity and transform our lives by augmenting our knowledge and capabilities. To achieve this vision, AI agents must effectively plan, perform multi-step reasoning and actions, respond to novel observations, and recover from errors, to successfully complete complex tasks across a wide range of scenarios. In this work, we introduce Magentic-One, a high-performing open-source agentic system for solving such tasks. Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, plans, tracks progress, and re-plans to recover from errors. Throughout task execution, the Orchestrator directs other specialized agents to perform tasks as needed, such as operating a web browser, navigating local files, or writing and executing Python code. We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks: GAIA, AssistantBench, and WebArena. Magentic-One achieves these results without modification to core agent capabilities or to how they collaborate, demonstrating progress towards generalist agentic systems. Moreover, Magentic-One's modular design allows agents to be added or removed from the team without additional prompt tuning or training, easing development and making it extensible to future scenarios. We provide an open-source implementation of Magentic-One, and we include AutoGenBench, a standalone tool for agentic evaluation. AutoGenBench provides built-in controls for repetition and isolation to run agentic benchmarks in a rigorous and contained manner -- which is important when agents' actions have side-effects. Magentic-One, AutoGenBench and detailed empirical performance evaluations of Magentic-One, including ablations and error analysis are available at https://aka.ms/magentic-one |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3126160123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126160123</sourcerecordid><originalsourceid>FETCH-proquest_journals_31261601233</originalsourceid><addsrcrecordid>eNqNjk8LgjAcQEcQJOV3GHQe7E9adBMpu0gHvcuIKbO52X4z6ttn0Afo9A7vHd4CRVwIRg47zlcoBugppTzd8yQRESpK2Skb9I1crTriDBfKKi-NhoDLyQRNsq_H1RuCGnDrPK6ceWrb4dwNo1EvXEu4wwYtW2lAxT-u0fZ8qvMLGb17TApC07vJ21k1gvGUpZTNV_9VH4SoOrE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126160123</pqid></control><display><type>article</type><title>Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks</title><source>Free E- Journals</source><creator>Fourney, Adam ; Bansal, Gagan ; Mozannar, Hussein ; Tan, Cheng ; Salinas, Eduardo ; Erkang ; Zhu ; Niedtner, Friederike ; Proebsting, Grace ; Griffin Bassman ; Gerrits, Jack ; Alber, Jacob ; Chang, Peter ; Loynd, Ricky ; West, Robert ; Dibia, Victor ; Awadallah, Ahmed ; Kamar, Ece ; Hosn, Rafah ; Amershi, Saleema</creator><creatorcontrib>Fourney, Adam ; Bansal, Gagan ; Mozannar, Hussein ; Tan, Cheng ; Salinas, Eduardo ; Erkang ; Zhu ; Niedtner, Friederike ; Proebsting, Grace ; Griffin Bassman ; Gerrits, Jack ; Alber, Jacob ; Chang, Peter ; Loynd, Ricky ; West, Robert ; Dibia, Victor ; Awadallah, Ahmed ; Kamar, Ece ; Hosn, Rafah ; Amershi, Saleema</creatorcontrib><description>Modern AI agents, driven by advances in large foundation models, promise to enhance our productivity and transform our lives by augmenting our knowledge and capabilities. To achieve this vision, AI agents must effectively plan, perform multi-step reasoning and actions, respond to novel observations, and recover from errors, to successfully complete complex tasks across a wide range of scenarios. In this work, we introduce Magentic-One, a high-performing open-source agentic system for solving such tasks. Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, plans, tracks progress, and re-plans to recover from errors. Throughout task execution, the Orchestrator directs other specialized agents to perform tasks as needed, such as operating a web browser, navigating local files, or writing and executing Python code. We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks: GAIA, AssistantBench, and WebArena. Magentic-One achieves these results without modification to core agent capabilities or to how they collaborate, demonstrating progress towards generalist agentic systems. Moreover, Magentic-One's modular design allows agents to be added or removed from the team without additional prompt tuning or training, easing development and making it extensible to future scenarios. We provide an open-source implementation of Magentic-One, and we include AutoGenBench, a standalone tool for agentic evaluation. AutoGenBench provides built-in controls for repetition and isolation to run agentic benchmarks in a rigorous and contained manner -- which is important when agents' actions have side-effects. Magentic-One, AutoGenBench and detailed empirical performance evaluations of Magentic-One, including ablations and error analysis are available at https://aka.ms/magentic-one</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ablation ; Benchmarks ; Error analysis ; Modular design ; Multiagent systems ; Open source software ; Performance evaluation ; Task complexity</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fourney, Adam</creatorcontrib><creatorcontrib>Bansal, Gagan</creatorcontrib><creatorcontrib>Mozannar, Hussein</creatorcontrib><creatorcontrib>Tan, Cheng</creatorcontrib><creatorcontrib>Salinas, Eduardo</creatorcontrib><creatorcontrib>Erkang</creatorcontrib><creatorcontrib>Zhu</creatorcontrib><creatorcontrib>Niedtner, Friederike</creatorcontrib><creatorcontrib>Proebsting, Grace</creatorcontrib><creatorcontrib>Griffin Bassman</creatorcontrib><creatorcontrib>Gerrits, Jack</creatorcontrib><creatorcontrib>Alber, Jacob</creatorcontrib><creatorcontrib>Chang, Peter</creatorcontrib><creatorcontrib>Loynd, Ricky</creatorcontrib><creatorcontrib>West, Robert</creatorcontrib><creatorcontrib>Dibia, Victor</creatorcontrib><creatorcontrib>Awadallah, Ahmed</creatorcontrib><creatorcontrib>Kamar, Ece</creatorcontrib><creatorcontrib>Hosn, Rafah</creatorcontrib><creatorcontrib>Amershi, Saleema</creatorcontrib><title>Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks</title><title>arXiv.org</title><description>Modern AI agents, driven by advances in large foundation models, promise to enhance our productivity and transform our lives by augmenting our knowledge and capabilities. To achieve this vision, AI agents must effectively plan, perform multi-step reasoning and actions, respond to novel observations, and recover from errors, to successfully complete complex tasks across a wide range of scenarios. In this work, we introduce Magentic-One, a high-performing open-source agentic system for solving such tasks. Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, plans, tracks progress, and re-plans to recover from errors. Throughout task execution, the Orchestrator directs other specialized agents to perform tasks as needed, such as operating a web browser, navigating local files, or writing and executing Python code. We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks: GAIA, AssistantBench, and WebArena. Magentic-One achieves these results without modification to core agent capabilities or to how they collaborate, demonstrating progress towards generalist agentic systems. Moreover, Magentic-One's modular design allows agents to be added or removed from the team without additional prompt tuning or training, easing development and making it extensible to future scenarios. We provide an open-source implementation of Magentic-One, and we include AutoGenBench, a standalone tool for agentic evaluation. AutoGenBench provides built-in controls for repetition and isolation to run agentic benchmarks in a rigorous and contained manner -- which is important when agents' actions have side-effects. Magentic-One, AutoGenBench and detailed empirical performance evaluations of Magentic-One, including ablations and error analysis are available at https://aka.ms/magentic-one</description><subject>Ablation</subject><subject>Benchmarks</subject><subject>Error analysis</subject><subject>Modular design</subject><subject>Multiagent systems</subject><subject>Open source software</subject><subject>Performance evaluation</subject><subject>Task complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjk8LgjAcQEcQJOV3GHQe7E9adBMpu0gHvcuIKbO52X4z6ttn0Afo9A7vHd4CRVwIRg47zlcoBugppTzd8yQRESpK2Skb9I1crTriDBfKKi-NhoDLyQRNsq_H1RuCGnDrPK6ceWrb4dwNo1EvXEu4wwYtW2lAxT-u0fZ8qvMLGb17TApC07vJ21k1gvGUpZTNV_9VH4SoOrE</recordid><startdate>20241107</startdate><enddate>20241107</enddate><creator>Fourney, Adam</creator><creator>Bansal, Gagan</creator><creator>Mozannar, Hussein</creator><creator>Tan, Cheng</creator><creator>Salinas, Eduardo</creator><creator>Erkang</creator><creator>Zhu</creator><creator>Niedtner, Friederike</creator><creator>Proebsting, Grace</creator><creator>Griffin Bassman</creator><creator>Gerrits, Jack</creator><creator>Alber, Jacob</creator><creator>Chang, Peter</creator><creator>Loynd, Ricky</creator><creator>West, Robert</creator><creator>Dibia, Victor</creator><creator>Awadallah, Ahmed</creator><creator>Kamar, Ece</creator><creator>Hosn, Rafah</creator><creator>Amershi, Saleema</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241107</creationdate><title>Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks</title><author>Fourney, Adam ; Bansal, Gagan ; Mozannar, Hussein ; Tan, Cheng ; Salinas, Eduardo ; Erkang ; Zhu ; Niedtner, Friederike ; Proebsting, Grace ; Griffin Bassman ; Gerrits, Jack ; Alber, Jacob ; Chang, Peter ; Loynd, Ricky ; West, Robert ; Dibia, Victor ; Awadallah, Ahmed ; Kamar, Ece ; Hosn, Rafah ; Amershi, Saleema</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31261601233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Benchmarks</topic><topic>Error analysis</topic><topic>Modular design</topic><topic>Multiagent systems</topic><topic>Open source software</topic><topic>Performance evaluation</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Fourney, Adam</creatorcontrib><creatorcontrib>Bansal, Gagan</creatorcontrib><creatorcontrib>Mozannar, Hussein</creatorcontrib><creatorcontrib>Tan, Cheng</creatorcontrib><creatorcontrib>Salinas, Eduardo</creatorcontrib><creatorcontrib>Erkang</creatorcontrib><creatorcontrib>Zhu</creatorcontrib><creatorcontrib>Niedtner, Friederike</creatorcontrib><creatorcontrib>Proebsting, Grace</creatorcontrib><creatorcontrib>Griffin Bassman</creatorcontrib><creatorcontrib>Gerrits, Jack</creatorcontrib><creatorcontrib>Alber, Jacob</creatorcontrib><creatorcontrib>Chang, Peter</creatorcontrib><creatorcontrib>Loynd, Ricky</creatorcontrib><creatorcontrib>West, Robert</creatorcontrib><creatorcontrib>Dibia, Victor</creatorcontrib><creatorcontrib>Awadallah, Ahmed</creatorcontrib><creatorcontrib>Kamar, Ece</creatorcontrib><creatorcontrib>Hosn, Rafah</creatorcontrib><creatorcontrib>Amershi, Saleema</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fourney, Adam</au><au>Bansal, Gagan</au><au>Mozannar, Hussein</au><au>Tan, Cheng</au><au>Salinas, Eduardo</au><au>Erkang</au><au>Zhu</au><au>Niedtner, Friederike</au><au>Proebsting, Grace</au><au>Griffin Bassman</au><au>Gerrits, Jack</au><au>Alber, Jacob</au><au>Chang, Peter</au><au>Loynd, Ricky</au><au>West, Robert</au><au>Dibia, Victor</au><au>Awadallah, Ahmed</au><au>Kamar, Ece</au><au>Hosn, Rafah</au><au>Amershi, Saleema</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks</atitle><jtitle>arXiv.org</jtitle><date>2024-11-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Modern AI agents, driven by advances in large foundation models, promise to enhance our productivity and transform our lives by augmenting our knowledge and capabilities. To achieve this vision, AI agents must effectively plan, perform multi-step reasoning and actions, respond to novel observations, and recover from errors, to successfully complete complex tasks across a wide range of scenarios. In this work, we introduce Magentic-One, a high-performing open-source agentic system for solving such tasks. Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, plans, tracks progress, and re-plans to recover from errors. Throughout task execution, the Orchestrator directs other specialized agents to perform tasks as needed, such as operating a web browser, navigating local files, or writing and executing Python code. We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks: GAIA, AssistantBench, and WebArena. Magentic-One achieves these results without modification to core agent capabilities or to how they collaborate, demonstrating progress towards generalist agentic systems. Moreover, Magentic-One's modular design allows agents to be added or removed from the team without additional prompt tuning or training, easing development and making it extensible to future scenarios. We provide an open-source implementation of Magentic-One, and we include AutoGenBench, a standalone tool for agentic evaluation. AutoGenBench provides built-in controls for repetition and isolation to run agentic benchmarks in a rigorous and contained manner -- which is important when agents' actions have side-effects. Magentic-One, AutoGenBench and detailed empirical performance evaluations of Magentic-One, including ablations and error analysis are available at https://aka.ms/magentic-one</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3126160123 |
source | Free E- Journals |
subjects | Ablation Benchmarks Error analysis Modular design Multiagent systems Open source software Performance evaluation Task complexity |
title | Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Magentic-One:%20A%20Generalist%20Multi-Agent%20System%20for%20Solving%20Complex%20Tasks&rft.jtitle=arXiv.org&rft.au=Fourney,%20Adam&rft.date=2024-11-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3126160123%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126160123&rft_id=info:pmid/&rfr_iscdi=true |