AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation

Neural network architecture design requires making many crucial decisions. The common desiderata is that similar decisions, with little modifications, can be reused in a variety of tasks and applications. To satisfy that, architectures must provide promising latency and performance trade-offs, suppo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Kag, Anil, Coskun, Huseyin, Chen, Jierun, Cao, Junli, Menapace, Willi, Siarohin, Aliaksandr, Tulyakov, Sergey, Ren, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kag, Anil
Coskun, Huseyin
Chen, Jierun
Cao, Junli
Menapace, Willi
Siarohin, Aliaksandr
Tulyakov, Sergey
Ren, Jian
description Neural network architecture design requires making many crucial decisions. The common desiderata is that similar decisions, with little modifications, can be reused in a variety of tasks and applications. To satisfy that, architectures must provide promising latency and performance trade-offs, support a variety of tasks, scale efficiently with respect to the amounts of data and compute, leverage available data from other tasks, and efficiently support various hardware. To this end, we introduce AsCAN -- a hybrid architecture, combining both convolutional and transformer blocks. We revisit the key design principles of hybrid architectures and propose a simple and effective \emph{asymmetric} architecture, where the distribution of convolutional and transformer blocks is \emph{asymmetric}, containing more convolutional blocks in the earlier stages, followed by more transformer blocks in later stages. AsCAN supports a variety of tasks: recognition, segmentation, class-conditional image generation, and features a superior trade-off between performance and latency. We then scale the same architecture to solve a large-scale text-to-image task and show state-of-the-art performance compared to the most recent public and commercial models. Notably, even without any computation optimization for transformer blocks, our models still yield faster inference speed than existing works featuring efficient attention mechanisms, highlighting the advantages and the value of our approach.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3126153419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126153419</sourcerecordid><originalsourceid>FETCH-proquest_journals_31261534193</originalsourceid><addsrcrecordid>eNqNis0KgkAURocgSMp3GGgtODNqPzsRq5WLaNNKxO7EmM6tmbHo7dPoAVp95-OcCfG4ECxYR5zPiG9tE4YhT1Y8joVHzqnN0mJLU_vuOnBG1TRD_cS2dwp1kDoHeiRagHuhuVkq0dBcSlWrwdAj1HjV6ptU-kL3oMFU412QqaxaC_5v52S5y0_ZIbgbfPRgXdlgb_SgSsF4wmIRsY34r_oA7ABCdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126153419</pqid></control><display><type>article</type><title>AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation</title><source>Free E- Journals</source><creator>Kag, Anil ; Coskun, Huseyin ; Chen, Jierun ; Cao, Junli ; Menapace, Willi ; Siarohin, Aliaksandr ; Tulyakov, Sergey ; Ren, Jian</creator><creatorcontrib>Kag, Anil ; Coskun, Huseyin ; Chen, Jierun ; Cao, Junli ; Menapace, Willi ; Siarohin, Aliaksandr ; Tulyakov, Sergey ; Ren, Jian</creatorcontrib><description>Neural network architecture design requires making many crucial decisions. The common desiderata is that similar decisions, with little modifications, can be reused in a variety of tasks and applications. To satisfy that, architectures must provide promising latency and performance trade-offs, support a variety of tasks, scale efficiently with respect to the amounts of data and compute, leverage available data from other tasks, and efficiently support various hardware. To this end, we introduce AsCAN -- a hybrid architecture, combining both convolutional and transformer blocks. We revisit the key design principles of hybrid architectures and propose a simple and effective \emph{asymmetric} architecture, where the distribution of convolutional and transformer blocks is \emph{asymmetric}, containing more convolutional blocks in the earlier stages, followed by more transformer blocks in later stages. AsCAN supports a variety of tasks: recognition, segmentation, class-conditional image generation, and features a superior trade-off between performance and latency. We then scale the same architecture to solve a large-scale text-to-image task and show state-of-the-art performance compared to the most recent public and commercial models. Notably, even without any computation optimization for transformer blocks, our models still yield faster inference speed than existing works featuring efficient attention mechanisms, highlighting the advantages and the value of our approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Attention ; Computer architecture ; Decisions ; Image processing ; Image segmentation ; Network latency ; Neural networks ; Skewed distributions ; Tradeoffs</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kag, Anil</creatorcontrib><creatorcontrib>Coskun, Huseyin</creatorcontrib><creatorcontrib>Chen, Jierun</creatorcontrib><creatorcontrib>Cao, Junli</creatorcontrib><creatorcontrib>Menapace, Willi</creatorcontrib><creatorcontrib>Siarohin, Aliaksandr</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><creatorcontrib>Ren, Jian</creatorcontrib><title>AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation</title><title>arXiv.org</title><description>Neural network architecture design requires making many crucial decisions. The common desiderata is that similar decisions, with little modifications, can be reused in a variety of tasks and applications. To satisfy that, architectures must provide promising latency and performance trade-offs, support a variety of tasks, scale efficiently with respect to the amounts of data and compute, leverage available data from other tasks, and efficiently support various hardware. To this end, we introduce AsCAN -- a hybrid architecture, combining both convolutional and transformer blocks. We revisit the key design principles of hybrid architectures and propose a simple and effective \emph{asymmetric} architecture, where the distribution of convolutional and transformer blocks is \emph{asymmetric}, containing more convolutional blocks in the earlier stages, followed by more transformer blocks in later stages. AsCAN supports a variety of tasks: recognition, segmentation, class-conditional image generation, and features a superior trade-off between performance and latency. We then scale the same architecture to solve a large-scale text-to-image task and show state-of-the-art performance compared to the most recent public and commercial models. Notably, even without any computation optimization for transformer blocks, our models still yield faster inference speed than existing works featuring efficient attention mechanisms, highlighting the advantages and the value of our approach.</description><subject>Attention</subject><subject>Computer architecture</subject><subject>Decisions</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Network latency</subject><subject>Neural networks</subject><subject>Skewed distributions</subject><subject>Tradeoffs</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNis0KgkAURocgSMp3GGgtODNqPzsRq5WLaNNKxO7EmM6tmbHo7dPoAVp95-OcCfG4ECxYR5zPiG9tE4YhT1Y8joVHzqnN0mJLU_vuOnBG1TRD_cS2dwp1kDoHeiRagHuhuVkq0dBcSlWrwdAj1HjV6ptU-kL3oMFU412QqaxaC_5v52S5y0_ZIbgbfPRgXdlgb_SgSsF4wmIRsY34r_oA7ABCdg</recordid><startdate>20241107</startdate><enddate>20241107</enddate><creator>Kag, Anil</creator><creator>Coskun, Huseyin</creator><creator>Chen, Jierun</creator><creator>Cao, Junli</creator><creator>Menapace, Willi</creator><creator>Siarohin, Aliaksandr</creator><creator>Tulyakov, Sergey</creator><creator>Ren, Jian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241107</creationdate><title>AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation</title><author>Kag, Anil ; Coskun, Huseyin ; Chen, Jierun ; Cao, Junli ; Menapace, Willi ; Siarohin, Aliaksandr ; Tulyakov, Sergey ; Ren, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31261534193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attention</topic><topic>Computer architecture</topic><topic>Decisions</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Network latency</topic><topic>Neural networks</topic><topic>Skewed distributions</topic><topic>Tradeoffs</topic><toplevel>online_resources</toplevel><creatorcontrib>Kag, Anil</creatorcontrib><creatorcontrib>Coskun, Huseyin</creatorcontrib><creatorcontrib>Chen, Jierun</creatorcontrib><creatorcontrib>Cao, Junli</creatorcontrib><creatorcontrib>Menapace, Willi</creatorcontrib><creatorcontrib>Siarohin, Aliaksandr</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><creatorcontrib>Ren, Jian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kag, Anil</au><au>Coskun, Huseyin</au><au>Chen, Jierun</au><au>Cao, Junli</au><au>Menapace, Willi</au><au>Siarohin, Aliaksandr</au><au>Tulyakov, Sergey</au><au>Ren, Jian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation</atitle><jtitle>arXiv.org</jtitle><date>2024-11-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Neural network architecture design requires making many crucial decisions. The common desiderata is that similar decisions, with little modifications, can be reused in a variety of tasks and applications. To satisfy that, architectures must provide promising latency and performance trade-offs, support a variety of tasks, scale efficiently with respect to the amounts of data and compute, leverage available data from other tasks, and efficiently support various hardware. To this end, we introduce AsCAN -- a hybrid architecture, combining both convolutional and transformer blocks. We revisit the key design principles of hybrid architectures and propose a simple and effective \emph{asymmetric} architecture, where the distribution of convolutional and transformer blocks is \emph{asymmetric}, containing more convolutional blocks in the earlier stages, followed by more transformer blocks in later stages. AsCAN supports a variety of tasks: recognition, segmentation, class-conditional image generation, and features a superior trade-off between performance and latency. We then scale the same architecture to solve a large-scale text-to-image task and show state-of-the-art performance compared to the most recent public and commercial models. Notably, even without any computation optimization for transformer blocks, our models still yield faster inference speed than existing works featuring efficient attention mechanisms, highlighting the advantages and the value of our approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3126153419
source Free E- Journals
subjects Attention
Computer architecture
Decisions
Image processing
Image segmentation
Network latency
Neural networks
Skewed distributions
Tradeoffs
title AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=AsCAN:%20Asymmetric%20Convolution-Attention%20Networks%20for%20Efficient%20Recognition%20and%20Generation&rft.jtitle=arXiv.org&rft.au=Kag,%20Anil&rft.date=2024-11-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3126153419%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126153419&rft_id=info:pmid/&rfr_iscdi=true