Kernel density estimation with polyspherical data and its applications

A kernel density estimator for data on the polysphere \(\mathbb{S}^{d_1}\times\cdots\times\mathbb{S}^{d_r}\), with \(r,d_1,\ldots,d_r\geq 1\), is presented in this paper. We derive the main asymptotic properties of the estimator, including mean square error, normality, and optimal bandwidths. We add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: García-Portugués, Eduardo, Meilán-Vila, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator García-Portugués, Eduardo
Meilán-Vila, Andrea
description A kernel density estimator for data on the polysphere \(\mathbb{S}^{d_1}\times\cdots\times\mathbb{S}^{d_r}\), with \(r,d_1,\ldots,d_r\geq 1\), is presented in this paper. We derive the main asymptotic properties of the estimator, including mean square error, normality, and optimal bandwidths. We address the kernel theory of the estimator beyond the von Mises-Fisher kernel, introducing new kernels that are more efficient and investigating normalizing constants, moments, and sampling methods thereof. Plug-in and cross-validated bandwidth selectors are also obtained. As a spin-off of the kernel density estimator, we propose a nonparametric \(k\)-sample test based on the Jensen-Shannon divergence. Numerical experiments illuminate the asymptotic theory of the kernel density estimator and demonstrate the superior performance of the \(k\)-sample test with respect to parametric alternatives in certain scenarios. Our smoothing methodology is applied to the analysis of the morphology of a sample of hippocampi of infants embedded on the high-dimensional polysphere \((\mathbb{S}^2)^{168}\) via skeletal representations (\(s\)-reps).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3126151848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126151848</sourcerecordid><originalsourceid>FETCH-proquest_journals_31261518483</originalsourceid><addsrcrecordid>eNqNzEEKwjAUBNAgCBbtHT64LjRJW7sXi-DWffnYlKbEJOanSG9vBA_gamDmMRuWCSl50VZC7FhONJdlKZqTqGuZse6mglUGBmVJxxUURf3EqJ2Ft44TeGdW8pMK-oFJYURAO4COBOi9Se3X0oFtRzSk8l_u2bG73M_Xwgf3WtJpP7sl2DT1kouG17ytWvmf-gAoXDwW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126151848</pqid></control><display><type>article</type><title>Kernel density estimation with polyspherical data and its applications</title><source>Freely Accessible Journals</source><creator>García-Portugués, Eduardo ; Meilán-Vila, Andrea</creator><creatorcontrib>García-Portugués, Eduardo ; Meilán-Vila, Andrea</creatorcontrib><description>A kernel density estimator for data on the polysphere \(\mathbb{S}^{d_1}\times\cdots\times\mathbb{S}^{d_r}\), with \(r,d_1,\ldots,d_r\geq 1\), is presented in this paper. We derive the main asymptotic properties of the estimator, including mean square error, normality, and optimal bandwidths. We address the kernel theory of the estimator beyond the von Mises-Fisher kernel, introducing new kernels that are more efficient and investigating normalizing constants, moments, and sampling methods thereof. Plug-in and cross-validated bandwidth selectors are also obtained. As a spin-off of the kernel density estimator, we propose a nonparametric \(k\)-sample test based on the Jensen-Shannon divergence. Numerical experiments illuminate the asymptotic theory of the kernel density estimator and demonstrate the superior performance of the \(k\)-sample test with respect to parametric alternatives in certain scenarios. Our smoothing methodology is applied to the analysis of the morphology of a sample of hippocampi of infants embedded on the high-dimensional polysphere \((\mathbb{S}^2)^{168}\) via skeletal representations (\(s\)-reps).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic methods ; Asymptotic properties ; Density ; Dimensional analysis ; Error analysis ; Normality ; Sampling methods ; Selectors</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>García-Portugués, Eduardo</creatorcontrib><creatorcontrib>Meilán-Vila, Andrea</creatorcontrib><title>Kernel density estimation with polyspherical data and its applications</title><title>arXiv.org</title><description>A kernel density estimator for data on the polysphere \(\mathbb{S}^{d_1}\times\cdots\times\mathbb{S}^{d_r}\), with \(r,d_1,\ldots,d_r\geq 1\), is presented in this paper. We derive the main asymptotic properties of the estimator, including mean square error, normality, and optimal bandwidths. We address the kernel theory of the estimator beyond the von Mises-Fisher kernel, introducing new kernels that are more efficient and investigating normalizing constants, moments, and sampling methods thereof. Plug-in and cross-validated bandwidth selectors are also obtained. As a spin-off of the kernel density estimator, we propose a nonparametric \(k\)-sample test based on the Jensen-Shannon divergence. Numerical experiments illuminate the asymptotic theory of the kernel density estimator and demonstrate the superior performance of the \(k\)-sample test with respect to parametric alternatives in certain scenarios. Our smoothing methodology is applied to the analysis of the morphology of a sample of hippocampi of infants embedded on the high-dimensional polysphere \((\mathbb{S}^2)^{168}\) via skeletal representations (\(s\)-reps).</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Density</subject><subject>Dimensional analysis</subject><subject>Error analysis</subject><subject>Normality</subject><subject>Sampling methods</subject><subject>Selectors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzEEKwjAUBNAgCBbtHT64LjRJW7sXi-DWffnYlKbEJOanSG9vBA_gamDmMRuWCSl50VZC7FhONJdlKZqTqGuZse6mglUGBmVJxxUURf3EqJ2Ft44TeGdW8pMK-oFJYURAO4COBOi9Se3X0oFtRzSk8l_u2bG73M_Xwgf3WtJpP7sl2DT1kouG17ytWvmf-gAoXDwW</recordid><startdate>20241106</startdate><enddate>20241106</enddate><creator>García-Portugués, Eduardo</creator><creator>Meilán-Vila, Andrea</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241106</creationdate><title>Kernel density estimation with polyspherical data and its applications</title><author>García-Portugués, Eduardo ; Meilán-Vila, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31261518483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Density</topic><topic>Dimensional analysis</topic><topic>Error analysis</topic><topic>Normality</topic><topic>Sampling methods</topic><topic>Selectors</topic><toplevel>online_resources</toplevel><creatorcontrib>García-Portugués, Eduardo</creatorcontrib><creatorcontrib>Meilán-Vila, Andrea</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Portugués, Eduardo</au><au>Meilán-Vila, Andrea</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Kernel density estimation with polyspherical data and its applications</atitle><jtitle>arXiv.org</jtitle><date>2024-11-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A kernel density estimator for data on the polysphere \(\mathbb{S}^{d_1}\times\cdots\times\mathbb{S}^{d_r}\), with \(r,d_1,\ldots,d_r\geq 1\), is presented in this paper. We derive the main asymptotic properties of the estimator, including mean square error, normality, and optimal bandwidths. We address the kernel theory of the estimator beyond the von Mises-Fisher kernel, introducing new kernels that are more efficient and investigating normalizing constants, moments, and sampling methods thereof. Plug-in and cross-validated bandwidth selectors are also obtained. As a spin-off of the kernel density estimator, we propose a nonparametric \(k\)-sample test based on the Jensen-Shannon divergence. Numerical experiments illuminate the asymptotic theory of the kernel density estimator and demonstrate the superior performance of the \(k\)-sample test with respect to parametric alternatives in certain scenarios. Our smoothing methodology is applied to the analysis of the morphology of a sample of hippocampi of infants embedded on the high-dimensional polysphere \((\mathbb{S}^2)^{168}\) via skeletal representations (\(s\)-reps).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3126151848
source Freely Accessible Journals
subjects Asymptotic methods
Asymptotic properties
Density
Dimensional analysis
Error analysis
Normality
Sampling methods
Selectors
title Kernel density estimation with polyspherical data and its applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Kernel%20density%20estimation%20with%20polyspherical%20data%20and%20its%20applications&rft.jtitle=arXiv.org&rft.au=Garc%C3%ADa-Portugu%C3%A9s,%20Eduardo&rft.date=2024-11-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3126151848%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126151848&rft_id=info:pmid/&rfr_iscdi=true