Kernel density estimation with polyspherical data and its applications
A kernel density estimator for data on the polysphere \(\mathbb{S}^{d_1}\times\cdots\times\mathbb{S}^{d_r}\), with \(r,d_1,\ldots,d_r\geq 1\), is presented in this paper. We derive the main asymptotic properties of the estimator, including mean square error, normality, and optimal bandwidths. We add...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | García-Portugués, Eduardo Meilán-Vila, Andrea |
description | A kernel density estimator for data on the polysphere \(\mathbb{S}^{d_1}\times\cdots\times\mathbb{S}^{d_r}\), with \(r,d_1,\ldots,d_r\geq 1\), is presented in this paper. We derive the main asymptotic properties of the estimator, including mean square error, normality, and optimal bandwidths. We address the kernel theory of the estimator beyond the von Mises-Fisher kernel, introducing new kernels that are more efficient and investigating normalizing constants, moments, and sampling methods thereof. Plug-in and cross-validated bandwidth selectors are also obtained. As a spin-off of the kernel density estimator, we propose a nonparametric \(k\)-sample test based on the Jensen-Shannon divergence. Numerical experiments illuminate the asymptotic theory of the kernel density estimator and demonstrate the superior performance of the \(k\)-sample test with respect to parametric alternatives in certain scenarios. Our smoothing methodology is applied to the analysis of the morphology of a sample of hippocampi of infants embedded on the high-dimensional polysphere \((\mathbb{S}^2)^{168}\) via skeletal representations (\(s\)-reps). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3126151848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126151848</sourcerecordid><originalsourceid>FETCH-proquest_journals_31261518483</originalsourceid><addsrcrecordid>eNqNzEEKwjAUBNAgCBbtHT64LjRJW7sXi-DWffnYlKbEJOanSG9vBA_gamDmMRuWCSl50VZC7FhONJdlKZqTqGuZse6mglUGBmVJxxUURf3EqJ2Ft44TeGdW8pMK-oFJYURAO4COBOi9Se3X0oFtRzSk8l_u2bG73M_Xwgf3WtJpP7sl2DT1kouG17ytWvmf-gAoXDwW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126151848</pqid></control><display><type>article</type><title>Kernel density estimation with polyspherical data and its applications</title><source>Freely Accessible Journals</source><creator>García-Portugués, Eduardo ; Meilán-Vila, Andrea</creator><creatorcontrib>García-Portugués, Eduardo ; Meilán-Vila, Andrea</creatorcontrib><description>A kernel density estimator for data on the polysphere \(\mathbb{S}^{d_1}\times\cdots\times\mathbb{S}^{d_r}\), with \(r,d_1,\ldots,d_r\geq 1\), is presented in this paper. We derive the main asymptotic properties of the estimator, including mean square error, normality, and optimal bandwidths. We address the kernel theory of the estimator beyond the von Mises-Fisher kernel, introducing new kernels that are more efficient and investigating normalizing constants, moments, and sampling methods thereof. Plug-in and cross-validated bandwidth selectors are also obtained. As a spin-off of the kernel density estimator, we propose a nonparametric \(k\)-sample test based on the Jensen-Shannon divergence. Numerical experiments illuminate the asymptotic theory of the kernel density estimator and demonstrate the superior performance of the \(k\)-sample test with respect to parametric alternatives in certain scenarios. Our smoothing methodology is applied to the analysis of the morphology of a sample of hippocampi of infants embedded on the high-dimensional polysphere \((\mathbb{S}^2)^{168}\) via skeletal representations (\(s\)-reps).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic methods ; Asymptotic properties ; Density ; Dimensional analysis ; Error analysis ; Normality ; Sampling methods ; Selectors</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>García-Portugués, Eduardo</creatorcontrib><creatorcontrib>Meilán-Vila, Andrea</creatorcontrib><title>Kernel density estimation with polyspherical data and its applications</title><title>arXiv.org</title><description>A kernel density estimator for data on the polysphere \(\mathbb{S}^{d_1}\times\cdots\times\mathbb{S}^{d_r}\), with \(r,d_1,\ldots,d_r\geq 1\), is presented in this paper. We derive the main asymptotic properties of the estimator, including mean square error, normality, and optimal bandwidths. We address the kernel theory of the estimator beyond the von Mises-Fisher kernel, introducing new kernels that are more efficient and investigating normalizing constants, moments, and sampling methods thereof. Plug-in and cross-validated bandwidth selectors are also obtained. As a spin-off of the kernel density estimator, we propose a nonparametric \(k\)-sample test based on the Jensen-Shannon divergence. Numerical experiments illuminate the asymptotic theory of the kernel density estimator and demonstrate the superior performance of the \(k\)-sample test with respect to parametric alternatives in certain scenarios. Our smoothing methodology is applied to the analysis of the morphology of a sample of hippocampi of infants embedded on the high-dimensional polysphere \((\mathbb{S}^2)^{168}\) via skeletal representations (\(s\)-reps).</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Density</subject><subject>Dimensional analysis</subject><subject>Error analysis</subject><subject>Normality</subject><subject>Sampling methods</subject><subject>Selectors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzEEKwjAUBNAgCBbtHT64LjRJW7sXi-DWffnYlKbEJOanSG9vBA_gamDmMRuWCSl50VZC7FhONJdlKZqTqGuZse6mglUGBmVJxxUURf3EqJ2Ft44TeGdW8pMK-oFJYURAO4COBOi9Se3X0oFtRzSk8l_u2bG73M_Xwgf3WtJpP7sl2DT1kouG17ytWvmf-gAoXDwW</recordid><startdate>20241106</startdate><enddate>20241106</enddate><creator>García-Portugués, Eduardo</creator><creator>Meilán-Vila, Andrea</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241106</creationdate><title>Kernel density estimation with polyspherical data and its applications</title><author>García-Portugués, Eduardo ; Meilán-Vila, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31261518483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Density</topic><topic>Dimensional analysis</topic><topic>Error analysis</topic><topic>Normality</topic><topic>Sampling methods</topic><topic>Selectors</topic><toplevel>online_resources</toplevel><creatorcontrib>García-Portugués, Eduardo</creatorcontrib><creatorcontrib>Meilán-Vila, Andrea</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Portugués, Eduardo</au><au>Meilán-Vila, Andrea</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Kernel density estimation with polyspherical data and its applications</atitle><jtitle>arXiv.org</jtitle><date>2024-11-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A kernel density estimator for data on the polysphere \(\mathbb{S}^{d_1}\times\cdots\times\mathbb{S}^{d_r}\), with \(r,d_1,\ldots,d_r\geq 1\), is presented in this paper. We derive the main asymptotic properties of the estimator, including mean square error, normality, and optimal bandwidths. We address the kernel theory of the estimator beyond the von Mises-Fisher kernel, introducing new kernels that are more efficient and investigating normalizing constants, moments, and sampling methods thereof. Plug-in and cross-validated bandwidth selectors are also obtained. As a spin-off of the kernel density estimator, we propose a nonparametric \(k\)-sample test based on the Jensen-Shannon divergence. Numerical experiments illuminate the asymptotic theory of the kernel density estimator and demonstrate the superior performance of the \(k\)-sample test with respect to parametric alternatives in certain scenarios. Our smoothing methodology is applied to the analysis of the morphology of a sample of hippocampi of infants embedded on the high-dimensional polysphere \((\mathbb{S}^2)^{168}\) via skeletal representations (\(s\)-reps).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3126151848 |
source | Freely Accessible Journals |
subjects | Asymptotic methods Asymptotic properties Density Dimensional analysis Error analysis Normality Sampling methods Selectors |
title | Kernel density estimation with polyspherical data and its applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Kernel%20density%20estimation%20with%20polyspherical%20data%20and%20its%20applications&rft.jtitle=arXiv.org&rft.au=Garc%C3%ADa-Portugu%C3%A9s,%20Eduardo&rft.date=2024-11-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3126151848%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126151848&rft_id=info:pmid/&rfr_iscdi=true |