COUD: Continual Urbanization Detector for Time Series Building Change Detection

Building change detection on remote sensing images is an important approach to monitoring the urban expansion and sustainable development of natural resources. In conventional building change detection tasks, only changed regions between two time phases are typically concerned. The relevance and tre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.19601-19615
Hauptverfasser: Zhao, Yitao, Li, Heng-Chao, Lei, Sen, Liu, Nanqing, Pan, Jie, Celik, Turgay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19615
container_issue
container_start_page 19601
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 17
creator Zhao, Yitao
Li, Heng-Chao
Lei, Sen
Liu, Nanqing
Pan, Jie
Celik, Turgay
description Building change detection on remote sensing images is an important approach to monitoring the urban expansion and sustainable development of natural resources. In conventional building change detection tasks, only changed regions between two time phases are typically concerned. The relevance and trend of spatiotemporal changes between multiple time phases are neglected in most cases. In this article, we propose a two-stage continual urbanization detector (COUD) for time series urban building change detection task. The COUD method employs self-supervised pretraining for feature refinement, and performs optimization through temporal distillation approach. Consequently, multitemporal feature extraction and changing regions localization of urban building complexes are conducted. Considering the gap in available dataset for time series change detection task, we produce and release a time series dataset named "TSCD". Chengdu region of China is selected as the study area in this research, which is partially covered by the proposed TSCD dataset. By applying the proposed COUD method to the selected study area for exploring the changing pattern from 2016 to 2022, a comprehensive analysis is conducted in conjunction with actual planning policies published by the management department. Extensive experimental results confirm the reliability of our proposed method.
doi_str_mv 10.1109/JSTARS.2024.3482559
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3126087401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10720916</ieee_id><doaj_id>oai_doaj_org_article_c6c8a54382e04dbe838f732e7a4e1585</doaj_id><sourcerecordid>3126087401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-161a494cb21f29248ae4d169af682ecdfc5942e5aec0109f2eb11d4a6eda58413</originalsourceid><addsrcrecordid>eNpNkU9r20AQxZfSQN0knyA9CHqWs7N_pN3eUrltEgyG2D4v49XIXeNo05V0aD595MqUHIaB4b3fzPAYuwE-B-D29nG9uXtazwUXai6VEVrbD2wmQEMOWuqPbAZW2hwUV5_Y5647cF6I0soZW1Wr7eJbVsW2D-2Ax2ybdtiGV-xDbLMF9eT7mLJmrE14pmxNKVCXfR_CsQ7tPqt-Y7uns3C0XLGLBo8dXZ_7Jdv-_LGp7vPl6tdDdbfMvTC2z6EAVFb5nYBGWKEMkqqhsNgURpCvG6-tEqSRPB8fbATtAGqFBdWojQJ5yR4mbh3x4F5SeMb010UM7t8gpr3D1Ad_JOcLb1ArOYK5qndkpGlKKahERaCNHllfJ9ZLin8G6np3iENqx_OdBFFwUyp-2ignlU-x6xI1_7cCd6cU3JSCO6XgzimMri-TKxDRO0cpuIVCvgGJkoKz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126087401</pqid></control><display><type>article</type><title>COUD: Continual Urbanization Detector for Time Series Building Change Detection</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhao, Yitao ; Li, Heng-Chao ; Lei, Sen ; Liu, Nanqing ; Pan, Jie ; Celik, Turgay</creator><creatorcontrib>Zhao, Yitao ; Li, Heng-Chao ; Lei, Sen ; Liu, Nanqing ; Pan, Jie ; Celik, Turgay</creatorcontrib><description>Building change detection on remote sensing images is an important approach to monitoring the urban expansion and sustainable development of natural resources. In conventional building change detection tasks, only changed regions between two time phases are typically concerned. The relevance and trend of spatiotemporal changes between multiple time phases are neglected in most cases. In this article, we propose a two-stage continual urbanization detector (COUD) for time series urban building change detection task. The COUD method employs self-supervised pretraining for feature refinement, and performs optimization through temporal distillation approach. Consequently, multitemporal feature extraction and changing regions localization of urban building complexes are conducted. Considering the gap in available dataset for time series change detection task, we produce and release a time series dataset named "TSCD". Chengdu region of China is selected as the study area in this research, which is partially covered by the proposed TSCD dataset. By applying the proposed COUD method to the selected study area for exploring the changing pattern from 2016 to 2022, a comprehensive analysis is conducted in conjunction with actual planning policies published by the management department. Extensive experimental results confirm the reliability of our proposed method.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2024.3482559</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Buildings ; Change detection ; Change detection (CD) ; Datasets ; Distillation ; Feature extraction ; Image resolution ; Labeling ; Localization ; Loss measurement ; Manuals ; Natural resources ; Pattern analysis ; Remote monitoring ; Remote sensing ; Resource development ; Satellites ; Sustainable development ; temporal distillation ; Time series ; Time series analysis ; Urban areas ; Urban sprawl ; Urbanization</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.19601-19615</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-161a494cb21f29248ae4d169af682ecdfc5942e5aec0109f2eb11d4a6eda58413</cites><orcidid>0000-0002-8010-3282 ; 0000-0001-6605-1757 ; 0000-0002-9735-570X ; 0000-0001-7564-4896 ; 0000-0001-6925-6010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhao, Yitao</creatorcontrib><creatorcontrib>Li, Heng-Chao</creatorcontrib><creatorcontrib>Lei, Sen</creatorcontrib><creatorcontrib>Liu, Nanqing</creatorcontrib><creatorcontrib>Pan, Jie</creatorcontrib><creatorcontrib>Celik, Turgay</creatorcontrib><title>COUD: Continual Urbanization Detector for Time Series Building Change Detection</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Building change detection on remote sensing images is an important approach to monitoring the urban expansion and sustainable development of natural resources. In conventional building change detection tasks, only changed regions between two time phases are typically concerned. The relevance and trend of spatiotemporal changes between multiple time phases are neglected in most cases. In this article, we propose a two-stage continual urbanization detector (COUD) for time series urban building change detection task. The COUD method employs self-supervised pretraining for feature refinement, and performs optimization through temporal distillation approach. Consequently, multitemporal feature extraction and changing regions localization of urban building complexes are conducted. Considering the gap in available dataset for time series change detection task, we produce and release a time series dataset named "TSCD". Chengdu region of China is selected as the study area in this research, which is partially covered by the proposed TSCD dataset. By applying the proposed COUD method to the selected study area for exploring the changing pattern from 2016 to 2022, a comprehensive analysis is conducted in conjunction with actual planning policies published by the management department. Extensive experimental results confirm the reliability of our proposed method.</description><subject>Buildings</subject><subject>Change detection</subject><subject>Change detection (CD)</subject><subject>Datasets</subject><subject>Distillation</subject><subject>Feature extraction</subject><subject>Image resolution</subject><subject>Labeling</subject><subject>Localization</subject><subject>Loss measurement</subject><subject>Manuals</subject><subject>Natural resources</subject><subject>Pattern analysis</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Resource development</subject><subject>Satellites</subject><subject>Sustainable development</subject><subject>temporal distillation</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Urban areas</subject><subject>Urban sprawl</subject><subject>Urbanization</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9r20AQxZfSQN0knyA9CHqWs7N_pN3eUrltEgyG2D4v49XIXeNo05V0aD595MqUHIaB4b3fzPAYuwE-B-D29nG9uXtazwUXai6VEVrbD2wmQEMOWuqPbAZW2hwUV5_Y5647cF6I0soZW1Wr7eJbVsW2D-2Ax2ybdtiGV-xDbLMF9eT7mLJmrE14pmxNKVCXfR_CsQ7tPqt-Y7uns3C0XLGLBo8dXZ_7Jdv-_LGp7vPl6tdDdbfMvTC2z6EAVFb5nYBGWKEMkqqhsNgURpCvG6-tEqSRPB8fbATtAGqFBdWojQJ5yR4mbh3x4F5SeMb010UM7t8gpr3D1Ad_JOcLb1ArOYK5qndkpGlKKahERaCNHllfJ9ZLin8G6np3iENqx_OdBFFwUyp-2ignlU-x6xI1_7cCd6cU3JSCO6XgzimMri-TKxDRO0cpuIVCvgGJkoKz</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhao, Yitao</creator><creator>Li, Heng-Chao</creator><creator>Lei, Sen</creator><creator>Liu, Nanqing</creator><creator>Pan, Jie</creator><creator>Celik, Turgay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8010-3282</orcidid><orcidid>https://orcid.org/0000-0001-6605-1757</orcidid><orcidid>https://orcid.org/0000-0002-9735-570X</orcidid><orcidid>https://orcid.org/0000-0001-7564-4896</orcidid><orcidid>https://orcid.org/0000-0001-6925-6010</orcidid></search><sort><creationdate>2024</creationdate><title>COUD: Continual Urbanization Detector for Time Series Building Change Detection</title><author>Zhao, Yitao ; Li, Heng-Chao ; Lei, Sen ; Liu, Nanqing ; Pan, Jie ; Celik, Turgay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-161a494cb21f29248ae4d169af682ecdfc5942e5aec0109f2eb11d4a6eda58413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Buildings</topic><topic>Change detection</topic><topic>Change detection (CD)</topic><topic>Datasets</topic><topic>Distillation</topic><topic>Feature extraction</topic><topic>Image resolution</topic><topic>Labeling</topic><topic>Localization</topic><topic>Loss measurement</topic><topic>Manuals</topic><topic>Natural resources</topic><topic>Pattern analysis</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Resource development</topic><topic>Satellites</topic><topic>Sustainable development</topic><topic>temporal distillation</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Urban areas</topic><topic>Urban sprawl</topic><topic>Urbanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yitao</creatorcontrib><creatorcontrib>Li, Heng-Chao</creatorcontrib><creatorcontrib>Lei, Sen</creatorcontrib><creatorcontrib>Liu, Nanqing</creatorcontrib><creatorcontrib>Pan, Jie</creatorcontrib><creatorcontrib>Celik, Turgay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yitao</au><au>Li, Heng-Chao</au><au>Lei, Sen</au><au>Liu, Nanqing</au><au>Pan, Jie</au><au>Celik, Turgay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COUD: Continual Urbanization Detector for Time Series Building Change Detection</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><spage>19601</spage><epage>19615</epage><pages>19601-19615</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Building change detection on remote sensing images is an important approach to monitoring the urban expansion and sustainable development of natural resources. In conventional building change detection tasks, only changed regions between two time phases are typically concerned. The relevance and trend of spatiotemporal changes between multiple time phases are neglected in most cases. In this article, we propose a two-stage continual urbanization detector (COUD) for time series urban building change detection task. The COUD method employs self-supervised pretraining for feature refinement, and performs optimization through temporal distillation approach. Consequently, multitemporal feature extraction and changing regions localization of urban building complexes are conducted. Considering the gap in available dataset for time series change detection task, we produce and release a time series dataset named "TSCD". Chengdu region of China is selected as the study area in this research, which is partially covered by the proposed TSCD dataset. By applying the proposed COUD method to the selected study area for exploring the changing pattern from 2016 to 2022, a comprehensive analysis is conducted in conjunction with actual planning policies published by the management department. Extensive experimental results confirm the reliability of our proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3482559</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8010-3282</orcidid><orcidid>https://orcid.org/0000-0001-6605-1757</orcidid><orcidid>https://orcid.org/0000-0002-9735-570X</orcidid><orcidid>https://orcid.org/0000-0001-7564-4896</orcidid><orcidid>https://orcid.org/0000-0001-6925-6010</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.19601-19615
issn 1939-1404
2151-1535
language eng
recordid cdi_proquest_journals_3126087401
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Buildings
Change detection
Change detection (CD)
Datasets
Distillation
Feature extraction
Image resolution
Labeling
Localization
Loss measurement
Manuals
Natural resources
Pattern analysis
Remote monitoring
Remote sensing
Resource development
Satellites
Sustainable development
temporal distillation
Time series
Time series analysis
Urban areas
Urban sprawl
Urbanization
title COUD: Continual Urbanization Detector for Time Series Building Change Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COUD:%20Continual%20Urbanization%20Detector%20for%20Time%20Series%20Building%20Change%20Detection&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Zhao,%20Yitao&rft.date=2024&rft.volume=17&rft.spage=19601&rft.epage=19615&rft.pages=19601-19615&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3482559&rft_dat=%3Cproquest_doaj_%3E3126087401%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126087401&rft_id=info:pmid/&rft_ieee_id=10720916&rft_doaj_id=oai_doaj_org_article_c6c8a54382e04dbe838f732e7a4e1585&rfr_iscdi=true