COUD: Continual Urbanization Detector for Time Series Building Change Detection
Building change detection on remote sensing images is an important approach to monitoring the urban expansion and sustainable development of natural resources. In conventional building change detection tasks, only changed regions between two time phases are typically concerned. The relevance and tre...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.19601-19615 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19615 |
---|---|
container_issue | |
container_start_page | 19601 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 17 |
creator | Zhao, Yitao Li, Heng-Chao Lei, Sen Liu, Nanqing Pan, Jie Celik, Turgay |
description | Building change detection on remote sensing images is an important approach to monitoring the urban expansion and sustainable development of natural resources. In conventional building change detection tasks, only changed regions between two time phases are typically concerned. The relevance and trend of spatiotemporal changes between multiple time phases are neglected in most cases. In this article, we propose a two-stage continual urbanization detector (COUD) for time series urban building change detection task. The COUD method employs self-supervised pretraining for feature refinement, and performs optimization through temporal distillation approach. Consequently, multitemporal feature extraction and changing regions localization of urban building complexes are conducted. Considering the gap in available dataset for time series change detection task, we produce and release a time series dataset named "TSCD". Chengdu region of China is selected as the study area in this research, which is partially covered by the proposed TSCD dataset. By applying the proposed COUD method to the selected study area for exploring the changing pattern from 2016 to 2022, a comprehensive analysis is conducted in conjunction with actual planning policies published by the management department. Extensive experimental results confirm the reliability of our proposed method. |
doi_str_mv | 10.1109/JSTARS.2024.3482559 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3126087401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10720916</ieee_id><doaj_id>oai_doaj_org_article_c6c8a54382e04dbe838f732e7a4e1585</doaj_id><sourcerecordid>3126087401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-161a494cb21f29248ae4d169af682ecdfc5942e5aec0109f2eb11d4a6eda58413</originalsourceid><addsrcrecordid>eNpNkU9r20AQxZfSQN0knyA9CHqWs7N_pN3eUrltEgyG2D4v49XIXeNo05V0aD595MqUHIaB4b3fzPAYuwE-B-D29nG9uXtazwUXai6VEVrbD2wmQEMOWuqPbAZW2hwUV5_Y5647cF6I0soZW1Wr7eJbVsW2D-2Ax2ybdtiGV-xDbLMF9eT7mLJmrE14pmxNKVCXfR_CsQ7tPqt-Y7uns3C0XLGLBo8dXZ_7Jdv-_LGp7vPl6tdDdbfMvTC2z6EAVFb5nYBGWKEMkqqhsNgURpCvG6-tEqSRPB8fbATtAGqFBdWojQJ5yR4mbh3x4F5SeMb010UM7t8gpr3D1Ad_JOcLb1ArOYK5qndkpGlKKahERaCNHllfJ9ZLin8G6np3iENqx_OdBFFwUyp-2ignlU-x6xI1_7cCd6cU3JSCO6XgzimMri-TKxDRO0cpuIVCvgGJkoKz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126087401</pqid></control><display><type>article</type><title>COUD: Continual Urbanization Detector for Time Series Building Change Detection</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhao, Yitao ; Li, Heng-Chao ; Lei, Sen ; Liu, Nanqing ; Pan, Jie ; Celik, Turgay</creator><creatorcontrib>Zhao, Yitao ; Li, Heng-Chao ; Lei, Sen ; Liu, Nanqing ; Pan, Jie ; Celik, Turgay</creatorcontrib><description>Building change detection on remote sensing images is an important approach to monitoring the urban expansion and sustainable development of natural resources. In conventional building change detection tasks, only changed regions between two time phases are typically concerned. The relevance and trend of spatiotemporal changes between multiple time phases are neglected in most cases. In this article, we propose a two-stage continual urbanization detector (COUD) for time series urban building change detection task. The COUD method employs self-supervised pretraining for feature refinement, and performs optimization through temporal distillation approach. Consequently, multitemporal feature extraction and changing regions localization of urban building complexes are conducted. Considering the gap in available dataset for time series change detection task, we produce and release a time series dataset named "TSCD". Chengdu region of China is selected as the study area in this research, which is partially covered by the proposed TSCD dataset. By applying the proposed COUD method to the selected study area for exploring the changing pattern from 2016 to 2022, a comprehensive analysis is conducted in conjunction with actual planning policies published by the management department. Extensive experimental results confirm the reliability of our proposed method.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2024.3482559</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Buildings ; Change detection ; Change detection (CD) ; Datasets ; Distillation ; Feature extraction ; Image resolution ; Labeling ; Localization ; Loss measurement ; Manuals ; Natural resources ; Pattern analysis ; Remote monitoring ; Remote sensing ; Resource development ; Satellites ; Sustainable development ; temporal distillation ; Time series ; Time series analysis ; Urban areas ; Urban sprawl ; Urbanization</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.19601-19615</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-161a494cb21f29248ae4d169af682ecdfc5942e5aec0109f2eb11d4a6eda58413</cites><orcidid>0000-0002-8010-3282 ; 0000-0001-6605-1757 ; 0000-0002-9735-570X ; 0000-0001-7564-4896 ; 0000-0001-6925-6010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhao, Yitao</creatorcontrib><creatorcontrib>Li, Heng-Chao</creatorcontrib><creatorcontrib>Lei, Sen</creatorcontrib><creatorcontrib>Liu, Nanqing</creatorcontrib><creatorcontrib>Pan, Jie</creatorcontrib><creatorcontrib>Celik, Turgay</creatorcontrib><title>COUD: Continual Urbanization Detector for Time Series Building Change Detection</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Building change detection on remote sensing images is an important approach to monitoring the urban expansion and sustainable development of natural resources. In conventional building change detection tasks, only changed regions between two time phases are typically concerned. The relevance and trend of spatiotemporal changes between multiple time phases are neglected in most cases. In this article, we propose a two-stage continual urbanization detector (COUD) for time series urban building change detection task. The COUD method employs self-supervised pretraining for feature refinement, and performs optimization through temporal distillation approach. Consequently, multitemporal feature extraction and changing regions localization of urban building complexes are conducted. Considering the gap in available dataset for time series change detection task, we produce and release a time series dataset named "TSCD". Chengdu region of China is selected as the study area in this research, which is partially covered by the proposed TSCD dataset. By applying the proposed COUD method to the selected study area for exploring the changing pattern from 2016 to 2022, a comprehensive analysis is conducted in conjunction with actual planning policies published by the management department. Extensive experimental results confirm the reliability of our proposed method.</description><subject>Buildings</subject><subject>Change detection</subject><subject>Change detection (CD)</subject><subject>Datasets</subject><subject>Distillation</subject><subject>Feature extraction</subject><subject>Image resolution</subject><subject>Labeling</subject><subject>Localization</subject><subject>Loss measurement</subject><subject>Manuals</subject><subject>Natural resources</subject><subject>Pattern analysis</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Resource development</subject><subject>Satellites</subject><subject>Sustainable development</subject><subject>temporal distillation</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Urban areas</subject><subject>Urban sprawl</subject><subject>Urbanization</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9r20AQxZfSQN0knyA9CHqWs7N_pN3eUrltEgyG2D4v49XIXeNo05V0aD595MqUHIaB4b3fzPAYuwE-B-D29nG9uXtazwUXai6VEVrbD2wmQEMOWuqPbAZW2hwUV5_Y5647cF6I0soZW1Wr7eJbVsW2D-2Ax2ybdtiGV-xDbLMF9eT7mLJmrE14pmxNKVCXfR_CsQ7tPqt-Y7uns3C0XLGLBo8dXZ_7Jdv-_LGp7vPl6tdDdbfMvTC2z6EAVFb5nYBGWKEMkqqhsNgURpCvG6-tEqSRPB8fbATtAGqFBdWojQJ5yR4mbh3x4F5SeMb010UM7t8gpr3D1Ad_JOcLb1ArOYK5qndkpGlKKahERaCNHllfJ9ZLin8G6np3iENqx_OdBFFwUyp-2ignlU-x6xI1_7cCd6cU3JSCO6XgzimMri-TKxDRO0cpuIVCvgGJkoKz</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhao, Yitao</creator><creator>Li, Heng-Chao</creator><creator>Lei, Sen</creator><creator>Liu, Nanqing</creator><creator>Pan, Jie</creator><creator>Celik, Turgay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8010-3282</orcidid><orcidid>https://orcid.org/0000-0001-6605-1757</orcidid><orcidid>https://orcid.org/0000-0002-9735-570X</orcidid><orcidid>https://orcid.org/0000-0001-7564-4896</orcidid><orcidid>https://orcid.org/0000-0001-6925-6010</orcidid></search><sort><creationdate>2024</creationdate><title>COUD: Continual Urbanization Detector for Time Series Building Change Detection</title><author>Zhao, Yitao ; Li, Heng-Chao ; Lei, Sen ; Liu, Nanqing ; Pan, Jie ; Celik, Turgay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-161a494cb21f29248ae4d169af682ecdfc5942e5aec0109f2eb11d4a6eda58413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Buildings</topic><topic>Change detection</topic><topic>Change detection (CD)</topic><topic>Datasets</topic><topic>Distillation</topic><topic>Feature extraction</topic><topic>Image resolution</topic><topic>Labeling</topic><topic>Localization</topic><topic>Loss measurement</topic><topic>Manuals</topic><topic>Natural resources</topic><topic>Pattern analysis</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Resource development</topic><topic>Satellites</topic><topic>Sustainable development</topic><topic>temporal distillation</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Urban areas</topic><topic>Urban sprawl</topic><topic>Urbanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yitao</creatorcontrib><creatorcontrib>Li, Heng-Chao</creatorcontrib><creatorcontrib>Lei, Sen</creatorcontrib><creatorcontrib>Liu, Nanqing</creatorcontrib><creatorcontrib>Pan, Jie</creatorcontrib><creatorcontrib>Celik, Turgay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yitao</au><au>Li, Heng-Chao</au><au>Lei, Sen</au><au>Liu, Nanqing</au><au>Pan, Jie</au><au>Celik, Turgay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COUD: Continual Urbanization Detector for Time Series Building Change Detection</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><spage>19601</spage><epage>19615</epage><pages>19601-19615</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Building change detection on remote sensing images is an important approach to monitoring the urban expansion and sustainable development of natural resources. In conventional building change detection tasks, only changed regions between two time phases are typically concerned. The relevance and trend of spatiotemporal changes between multiple time phases are neglected in most cases. In this article, we propose a two-stage continual urbanization detector (COUD) for time series urban building change detection task. The COUD method employs self-supervised pretraining for feature refinement, and performs optimization through temporal distillation approach. Consequently, multitemporal feature extraction and changing regions localization of urban building complexes are conducted. Considering the gap in available dataset for time series change detection task, we produce and release a time series dataset named "TSCD". Chengdu region of China is selected as the study area in this research, which is partially covered by the proposed TSCD dataset. By applying the proposed COUD method to the selected study area for exploring the changing pattern from 2016 to 2022, a comprehensive analysis is conducted in conjunction with actual planning policies published by the management department. Extensive experimental results confirm the reliability of our proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3482559</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8010-3282</orcidid><orcidid>https://orcid.org/0000-0001-6605-1757</orcidid><orcidid>https://orcid.org/0000-0002-9735-570X</orcidid><orcidid>https://orcid.org/0000-0001-7564-4896</orcidid><orcidid>https://orcid.org/0000-0001-6925-6010</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.19601-19615 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_proquest_journals_3126087401 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Buildings Change detection Change detection (CD) Datasets Distillation Feature extraction Image resolution Labeling Localization Loss measurement Manuals Natural resources Pattern analysis Remote monitoring Remote sensing Resource development Satellites Sustainable development temporal distillation Time series Time series analysis Urban areas Urban sprawl Urbanization |
title | COUD: Continual Urbanization Detector for Time Series Building Change Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COUD:%20Continual%20Urbanization%20Detector%20for%20Time%20Series%20Building%20Change%20Detection&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Zhao,%20Yitao&rft.date=2024&rft.volume=17&rft.spage=19601&rft.epage=19615&rft.pages=19601-19615&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3482559&rft_dat=%3Cproquest_doaj_%3E3126087401%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126087401&rft_id=info:pmid/&rft_ieee_id=10720916&rft_doaj_id=oai_doaj_org_article_c6c8a54382e04dbe838f732e7a4e1585&rfr_iscdi=true |