Optimization Study of the Structural Parameters of an Artificial Percolation Intake Riverbed Based on a Numerical Orthogonal Test

Research on water abstraction techniques in sandy rivers is crucial for addressing water scarcity issues in northern China. This study introduces an artificial percolation water intake riverbed structural model designed to prevent sand intake and facilitate the extraction of clear water from sandy r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2024-11, Vol.16 (21), p.3110
Hauptverfasser: Yang, Ming, Wang, Lianle, Sun, Xihuan, Li, Yongye, Zheng, Lijian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 3110
container_title Water (Basel)
container_volume 16
creator Yang, Ming
Wang, Lianle
Sun, Xihuan
Li, Yongye
Zheng, Lijian
description Research on water abstraction techniques in sandy rivers is crucial for addressing water scarcity issues in northern China. This study introduces an artificial percolation water intake riverbed structural model designed to prevent sand intake and facilitate the extraction of clear water from sandy rivers, the main function of which is to artificially construct a helical flow field to realize the separation of water and sand and, at the same time, percolate the water. In this paper, we use a numerical orthogonal test method to study the influence of structural parameters and their combinations on water extraction by percolation, and the preferred combination of structural parameters. The main conclusions of this paper are as follows: Under the condition of certain structural parameters of the artificial riverbed, the single-width flow rate has an important effect on the mean circumferential flow rate of the vortex tube and the vortex tube seepage volume. The effect of different structural parameters on the mean circumferential flow rate of the vortex tube and the vortex tube seepage varies in magnitude. The longitudinal slope of artificial riverbed i had the greatest and most significant effect on the mean circumferential flow rate of the vortex tube, and each structural parameter had some effect on the vortex tube seepage Q but not to a significant level. When the sand content of the water flow is 15 kg/m3 and the maximum sand grain size of the suspended mass is 2 mm, the optimal structural parameter combinations of the artificial riverbed under different working conditions are as follows: Combination 20 is the optimal structural parameter combination for q = 0.3 m2/s; Combination 24 is the optimal structural parameter combination for q = 0.6 m2/s; and Combination 24 is the optimal structural parameter combination for q = 0.9 m2/s. The present study is of great significance for understanding the influence of each structural parameter and its combination on the effect of the water intake and sand discharge of an artificial percolation intake riverbed, and for optimizing the combination of the structural parameters of an artificial percolation intake riverbed.
doi_str_mv 10.3390/w16213110
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3126064339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815422746</galeid><sourcerecordid>A815422746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c186t-d69fe8833accb3f03c711277e87f62efcb59a4f4b7f65b54ed6d339be2e816963</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBITIMD_6ASJw4dSZOm6XFMfEyaGIJxrtLU2TLaZiQpaNz456QaQjiSY_u950R2FF1gNCGkQNefmKWYYIyOolGKcpJQSvHxv_g0Ondui4LRgvMMjaLv5c7rVn8Jr00Xv_i-3sdGxX4DIbG99L0VTfwkrGjBg3UDKLp4ar1WWuoBAytNc9DPOy_eIH7WH2ArqOMb4YIPgIgf-xaslkGwtH5j1qYL4QqcP4tOlGgcnP_e4-j17nY1e0gWy_v5bLpIJObMJzUrFHBOiJCyIgoRmWOc5jnwXLEUlKyyQlBFq5BmVUahZnUYSgUpcMwKRsbR5aHvzpr3Pjxcbk1vwy9cSXDKEKOBHliTA2stGih1p4y3QoZTQ6ul6UDpUJ9ynNE0zenQ9uogkNY4Z0GVO6tbYfclRuWwlfJvK-QHINF_zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126064339</pqid></control><display><type>article</type><title>Optimization Study of the Structural Parameters of an Artificial Percolation Intake Riverbed Based on a Numerical Orthogonal Test</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Ming ; Wang, Lianle ; Sun, Xihuan ; Li, Yongye ; Zheng, Lijian</creator><creatorcontrib>Yang, Ming ; Wang, Lianle ; Sun, Xihuan ; Li, Yongye ; Zheng, Lijian</creatorcontrib><description>Research on water abstraction techniques in sandy rivers is crucial for addressing water scarcity issues in northern China. This study introduces an artificial percolation water intake riverbed structural model designed to prevent sand intake and facilitate the extraction of clear water from sandy rivers, the main function of which is to artificially construct a helical flow field to realize the separation of water and sand and, at the same time, percolate the water. In this paper, we use a numerical orthogonal test method to study the influence of structural parameters and their combinations on water extraction by percolation, and the preferred combination of structural parameters. The main conclusions of this paper are as follows: Under the condition of certain structural parameters of the artificial riverbed, the single-width flow rate has an important effect on the mean circumferential flow rate of the vortex tube and the vortex tube seepage volume. The effect of different structural parameters on the mean circumferential flow rate of the vortex tube and the vortex tube seepage varies in magnitude. The longitudinal slope of artificial riverbed i had the greatest and most significant effect on the mean circumferential flow rate of the vortex tube, and each structural parameter had some effect on the vortex tube seepage Q but not to a significant level. When the sand content of the water flow is 15 kg/m3 and the maximum sand grain size of the suspended mass is 2 mm, the optimal structural parameter combinations of the artificial riverbed under different working conditions are as follows: Combination 20 is the optimal structural parameter combination for q = 0.3 m2/s; Combination 24 is the optimal structural parameter combination for q = 0.6 m2/s; and Combination 24 is the optimal structural parameter combination for q = 0.9 m2/s. The present study is of great significance for understanding the influence of each structural parameter and its combination on the effect of the water intake and sand discharge of an artificial percolation intake riverbed, and for optimizing the combination of the structural parameters of an artificial percolation intake riverbed.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w16213110</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorption ; Cavitation ; Construction ; Design and construction ; Efficiency ; Energy consumption ; Environmental aspects ; Flow velocity ; Hydraulic structures ; Hydraulics ; Measurement ; Mechanical properties ; Optimization ; Rivers ; Sand ; Sediment transport ; Sedimentation &amp; deposition ; Test methods ; Vortices ; Water ; Water shortages ; Working conditions</subject><ispartof>Water (Basel), 2024-11, Vol.16 (21), p.3110</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c186t-d69fe8833accb3f03c711277e87f62efcb59a4f4b7f65b54ed6d339be2e816963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Wang, Lianle</creatorcontrib><creatorcontrib>Sun, Xihuan</creatorcontrib><creatorcontrib>Li, Yongye</creatorcontrib><creatorcontrib>Zheng, Lijian</creatorcontrib><title>Optimization Study of the Structural Parameters of an Artificial Percolation Intake Riverbed Based on a Numerical Orthogonal Test</title><title>Water (Basel)</title><description>Research on water abstraction techniques in sandy rivers is crucial for addressing water scarcity issues in northern China. This study introduces an artificial percolation water intake riverbed structural model designed to prevent sand intake and facilitate the extraction of clear water from sandy rivers, the main function of which is to artificially construct a helical flow field to realize the separation of water and sand and, at the same time, percolate the water. In this paper, we use a numerical orthogonal test method to study the influence of structural parameters and their combinations on water extraction by percolation, and the preferred combination of structural parameters. The main conclusions of this paper are as follows: Under the condition of certain structural parameters of the artificial riverbed, the single-width flow rate has an important effect on the mean circumferential flow rate of the vortex tube and the vortex tube seepage volume. The effect of different structural parameters on the mean circumferential flow rate of the vortex tube and the vortex tube seepage varies in magnitude. The longitudinal slope of artificial riverbed i had the greatest and most significant effect on the mean circumferential flow rate of the vortex tube, and each structural parameter had some effect on the vortex tube seepage Q but not to a significant level. When the sand content of the water flow is 15 kg/m3 and the maximum sand grain size of the suspended mass is 2 mm, the optimal structural parameter combinations of the artificial riverbed under different working conditions are as follows: Combination 20 is the optimal structural parameter combination for q = 0.3 m2/s; Combination 24 is the optimal structural parameter combination for q = 0.6 m2/s; and Combination 24 is the optimal structural parameter combination for q = 0.9 m2/s. The present study is of great significance for understanding the influence of each structural parameter and its combination on the effect of the water intake and sand discharge of an artificial percolation intake riverbed, and for optimizing the combination of the structural parameters of an artificial percolation intake riverbed.</description><subject>Adsorption</subject><subject>Cavitation</subject><subject>Construction</subject><subject>Design and construction</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Environmental aspects</subject><subject>Flow velocity</subject><subject>Hydraulic structures</subject><subject>Hydraulics</subject><subject>Measurement</subject><subject>Mechanical properties</subject><subject>Optimization</subject><subject>Rivers</subject><subject>Sand</subject><subject>Sediment transport</subject><subject>Sedimentation &amp; deposition</subject><subject>Test methods</subject><subject>Vortices</subject><subject>Water</subject><subject>Water shortages</subject><subject>Working conditions</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUU1PwzAMrRBITIMD_6ASJw4dSZOm6XFMfEyaGIJxrtLU2TLaZiQpaNz456QaQjiSY_u950R2FF1gNCGkQNefmKWYYIyOolGKcpJQSvHxv_g0Ondui4LRgvMMjaLv5c7rVn8Jr00Xv_i-3sdGxX4DIbG99L0VTfwkrGjBg3UDKLp4ar1WWuoBAytNc9DPOy_eIH7WH2ArqOMb4YIPgIgf-xaslkGwtH5j1qYL4QqcP4tOlGgcnP_e4-j17nY1e0gWy_v5bLpIJObMJzUrFHBOiJCyIgoRmWOc5jnwXLEUlKyyQlBFq5BmVUahZnUYSgUpcMwKRsbR5aHvzpr3Pjxcbk1vwy9cSXDKEKOBHliTA2stGih1p4y3QoZTQ6ul6UDpUJ9ynNE0zenQ9uogkNY4Z0GVO6tbYfclRuWwlfJvK-QHINF_zw</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Yang, Ming</creator><creator>Wang, Lianle</creator><creator>Sun, Xihuan</creator><creator>Li, Yongye</creator><creator>Zheng, Lijian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20241101</creationdate><title>Optimization Study of the Structural Parameters of an Artificial Percolation Intake Riverbed Based on a Numerical Orthogonal Test</title><author>Yang, Ming ; Wang, Lianle ; Sun, Xihuan ; Li, Yongye ; Zheng, Lijian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c186t-d69fe8833accb3f03c711277e87f62efcb59a4f4b7f65b54ed6d339be2e816963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Cavitation</topic><topic>Construction</topic><topic>Design and construction</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Environmental aspects</topic><topic>Flow velocity</topic><topic>Hydraulic structures</topic><topic>Hydraulics</topic><topic>Measurement</topic><topic>Mechanical properties</topic><topic>Optimization</topic><topic>Rivers</topic><topic>Sand</topic><topic>Sediment transport</topic><topic>Sedimentation &amp; deposition</topic><topic>Test methods</topic><topic>Vortices</topic><topic>Water</topic><topic>Water shortages</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Wang, Lianle</creatorcontrib><creatorcontrib>Sun, Xihuan</creatorcontrib><creatorcontrib>Li, Yongye</creatorcontrib><creatorcontrib>Zheng, Lijian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ming</au><au>Wang, Lianle</au><au>Sun, Xihuan</au><au>Li, Yongye</au><au>Zheng, Lijian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization Study of the Structural Parameters of an Artificial Percolation Intake Riverbed Based on a Numerical Orthogonal Test</atitle><jtitle>Water (Basel)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>16</volume><issue>21</issue><spage>3110</spage><pages>3110-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Research on water abstraction techniques in sandy rivers is crucial for addressing water scarcity issues in northern China. This study introduces an artificial percolation water intake riverbed structural model designed to prevent sand intake and facilitate the extraction of clear water from sandy rivers, the main function of which is to artificially construct a helical flow field to realize the separation of water and sand and, at the same time, percolate the water. In this paper, we use a numerical orthogonal test method to study the influence of structural parameters and their combinations on water extraction by percolation, and the preferred combination of structural parameters. The main conclusions of this paper are as follows: Under the condition of certain structural parameters of the artificial riverbed, the single-width flow rate has an important effect on the mean circumferential flow rate of the vortex tube and the vortex tube seepage volume. The effect of different structural parameters on the mean circumferential flow rate of the vortex tube and the vortex tube seepage varies in magnitude. The longitudinal slope of artificial riverbed i had the greatest and most significant effect on the mean circumferential flow rate of the vortex tube, and each structural parameter had some effect on the vortex tube seepage Q but not to a significant level. When the sand content of the water flow is 15 kg/m3 and the maximum sand grain size of the suspended mass is 2 mm, the optimal structural parameter combinations of the artificial riverbed under different working conditions are as follows: Combination 20 is the optimal structural parameter combination for q = 0.3 m2/s; Combination 24 is the optimal structural parameter combination for q = 0.6 m2/s; and Combination 24 is the optimal structural parameter combination for q = 0.9 m2/s. The present study is of great significance for understanding the influence of each structural parameter and its combination on the effect of the water intake and sand discharge of an artificial percolation intake riverbed, and for optimizing the combination of the structural parameters of an artificial percolation intake riverbed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w16213110</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2024-11, Vol.16 (21), p.3110
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_3126064339
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Adsorption
Cavitation
Construction
Design and construction
Efficiency
Energy consumption
Environmental aspects
Flow velocity
Hydraulic structures
Hydraulics
Measurement
Mechanical properties
Optimization
Rivers
Sand
Sediment transport
Sedimentation & deposition
Test methods
Vortices
Water
Water shortages
Working conditions
title Optimization Study of the Structural Parameters of an Artificial Percolation Intake Riverbed Based on a Numerical Orthogonal Test
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A16%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20Study%20of%20the%20Structural%20Parameters%20of%20an%20Artificial%20Percolation%20Intake%20Riverbed%20Based%20on%20a%20Numerical%20Orthogonal%20Test&rft.jtitle=Water%20(Basel)&rft.au=Yang,%20Ming&rft.date=2024-11-01&rft.volume=16&rft.issue=21&rft.spage=3110&rft.pages=3110-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w16213110&rft_dat=%3Cgale_proqu%3EA815422746%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126064339&rft_id=info:pmid/&rft_galeid=A815422746&rfr_iscdi=true