Regularized step directions in nonlinear conjugate gradient methods

Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used. We focus on the use of cubic regularization to improve the CGM direction independent of the step length computation. In this paper, we propose the Hybrid Cubic Regularization of CGM, where regularized steps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming computation 2024-12, Vol.16 (4), p.629-664
Hauptverfasser: Buhler, Cassidy K., Benson, Hande Y., Shanno, David F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 664
container_issue 4
container_start_page 629
container_title Mathematical programming computation
container_volume 16
creator Buhler, Cassidy K.
Benson, Hande Y.
Shanno, David F.
description Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used. We focus on the use of cubic regularization to improve the CGM direction independent of the step length computation. In this paper, we propose the Hybrid Cubic Regularization of CGM, where regularized steps are used selectively. Using Shanno’s reformulation of CGM as a memoryless BFGS method, we derive new formulas for the regularized step direction. We show that the regularized step direction uses the same order of computational burden per iteration as its non-regularized version. Moreover, the Hybrid Cubic Regularization of CGM exhibits global convergence with fewer assumptions. In numerical experiments, the new step directions are shown to require fewer iteration counts, improve runtime, and reduce the need to reset the step direction. Overall, the Hybrid Cubic Regularization of CGM exhibits the same memoryless and matrix-free properties, while outperforming CGM as a memoryless BFGS method in iterations and runtime.
doi_str_mv 10.1007/s12532-024-00265-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126032667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126032667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-89066f015a166d53d90b4af33ed7dce5e147c255845b8c76a9bd1d827d4266343</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOIzzB1wFXEfzTrOUwRcMCKLrkDa3tcNMOibpQn-91YruvJt7F-ecy_kQOmf0klFqrjLjSnBCuSSUcq2IPUILVmlDuFXm-PeW9hStct7SaQQ3lbALtH6Cbtz51H9AwLnAAYc-QVP6IWbcRxyHuOsj-ISbIW7HzhfAXfKhh1jwHsrrEPIZOmn9LsPqZy_Ry-3N8_qebB7vHtbXG9JwKQupLNW6pUx5pnVQIlhaS98KAcGEBhQwaRquVCVVXTVGe1sHFipuguRaCymW6GLOPaThbYRc3HYYU5xeOsG4njppbSYVn1VNGnJO0LpD6vc-vTtG3RcvN_NyEy_3zcvZySRmU57EsYP0F_2P6xPKpmzz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126032667</pqid></control><display><type>article</type><title>Regularized step directions in nonlinear conjugate gradient methods</title><source>SpringerLink Journals - AutoHoldings</source><creator>Buhler, Cassidy K. ; Benson, Hande Y. ; Shanno, David F.</creator><creatorcontrib>Buhler, Cassidy K. ; Benson, Hande Y. ; Shanno, David F.</creatorcontrib><description>Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used. We focus on the use of cubic regularization to improve the CGM direction independent of the step length computation. In this paper, we propose the Hybrid Cubic Regularization of CGM, where regularized steps are used selectively. Using Shanno’s reformulation of CGM as a memoryless BFGS method, we derive new formulas for the regularized step direction. We show that the regularized step direction uses the same order of computational burden per iteration as its non-regularized version. Moreover, the Hybrid Cubic Regularization of CGM exhibits global convergence with fewer assumptions. In numerical experiments, the new step directions are shown to require fewer iteration counts, improve runtime, and reduce the need to reset the step direction. Overall, the Hybrid Cubic Regularization of CGM exhibits the same memoryless and matrix-free properties, while outperforming CGM as a memoryless BFGS method in iterations and runtime.</description><identifier>ISSN: 1867-2949</identifier><identifier>EISSN: 1867-2957</identifier><identifier>DOI: 10.1007/s12532-024-00265-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Conjugate gradient method ; Full Length Paper ; Iterative methods ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Optimization ; Regularization ; Theory of Computation</subject><ispartof>Mathematical programming computation, 2024-12, Vol.16 (4), p.629-664</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-89066f015a166d53d90b4af33ed7dce5e147c255845b8c76a9bd1d827d4266343</cites><orcidid>0000-0003-4157-4273 ; 0000-0002-5554-9928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12532-024-00265-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12532-024-00265-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Buhler, Cassidy K.</creatorcontrib><creatorcontrib>Benson, Hande Y.</creatorcontrib><creatorcontrib>Shanno, David F.</creatorcontrib><title>Regularized step directions in nonlinear conjugate gradient methods</title><title>Mathematical programming computation</title><addtitle>Math. Prog. Comp</addtitle><description>Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used. We focus on the use of cubic regularization to improve the CGM direction independent of the step length computation. In this paper, we propose the Hybrid Cubic Regularization of CGM, where regularized steps are used selectively. Using Shanno’s reformulation of CGM as a memoryless BFGS method, we derive new formulas for the regularized step direction. We show that the regularized step direction uses the same order of computational burden per iteration as its non-regularized version. Moreover, the Hybrid Cubic Regularization of CGM exhibits global convergence with fewer assumptions. In numerical experiments, the new step directions are shown to require fewer iteration counts, improve runtime, and reduce the need to reset the step direction. Overall, the Hybrid Cubic Regularization of CGM exhibits the same memoryless and matrix-free properties, while outperforming CGM as a memoryless BFGS method in iterations and runtime.</description><subject>Conjugate gradient method</subject><subject>Full Length Paper</subject><subject>Iterative methods</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Theory of Computation</subject><issn>1867-2949</issn><issn>1867-2957</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLxDAUhYMoOIzzB1wFXEfzTrOUwRcMCKLrkDa3tcNMOibpQn-91YruvJt7F-ecy_kQOmf0klFqrjLjSnBCuSSUcq2IPUILVmlDuFXm-PeW9hStct7SaQQ3lbALtH6Cbtz51H9AwLnAAYc-QVP6IWbcRxyHuOsj-ISbIW7HzhfAXfKhh1jwHsrrEPIZOmn9LsPqZy_Ry-3N8_qebB7vHtbXG9JwKQupLNW6pUx5pnVQIlhaS98KAcGEBhQwaRquVCVVXTVGe1sHFipuguRaCymW6GLOPaThbYRc3HYYU5xeOsG4njppbSYVn1VNGnJO0LpD6vc-vTtG3RcvN_NyEy_3zcvZySRmU57EsYP0F_2P6xPKpmzz</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Buhler, Cassidy K.</creator><creator>Benson, Hande Y.</creator><creator>Shanno, David F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4157-4273</orcidid><orcidid>https://orcid.org/0000-0002-5554-9928</orcidid></search><sort><creationdate>20241201</creationdate><title>Regularized step directions in nonlinear conjugate gradient methods</title><author>Buhler, Cassidy K. ; Benson, Hande Y. ; Shanno, David F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-89066f015a166d53d90b4af33ed7dce5e147c255845b8c76a9bd1d827d4266343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Conjugate gradient method</topic><topic>Full Length Paper</topic><topic>Iterative methods</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buhler, Cassidy K.</creatorcontrib><creatorcontrib>Benson, Hande Y.</creatorcontrib><creatorcontrib>Shanno, David F.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematical programming computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buhler, Cassidy K.</au><au>Benson, Hande Y.</au><au>Shanno, David F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized step directions in nonlinear conjugate gradient methods</atitle><jtitle>Mathematical programming computation</jtitle><stitle>Math. Prog. Comp</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>4</issue><spage>629</spage><epage>664</epage><pages>629-664</pages><issn>1867-2949</issn><eissn>1867-2957</eissn><abstract>Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used. We focus on the use of cubic regularization to improve the CGM direction independent of the step length computation. In this paper, we propose the Hybrid Cubic Regularization of CGM, where regularized steps are used selectively. Using Shanno’s reformulation of CGM as a memoryless BFGS method, we derive new formulas for the regularized step direction. We show that the regularized step direction uses the same order of computational burden per iteration as its non-regularized version. Moreover, the Hybrid Cubic Regularization of CGM exhibits global convergence with fewer assumptions. In numerical experiments, the new step directions are shown to require fewer iteration counts, improve runtime, and reduce the need to reset the step direction. Overall, the Hybrid Cubic Regularization of CGM exhibits the same memoryless and matrix-free properties, while outperforming CGM as a memoryless BFGS method in iterations and runtime.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12532-024-00265-9</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0003-4157-4273</orcidid><orcidid>https://orcid.org/0000-0002-5554-9928</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-2949
ispartof Mathematical programming computation, 2024-12, Vol.16 (4), p.629-664
issn 1867-2949
1867-2957
language eng
recordid cdi_proquest_journals_3126032667
source SpringerLink Journals - AutoHoldings
subjects Conjugate gradient method
Full Length Paper
Iterative methods
Mathematics
Mathematics and Statistics
Mathematics of Computing
Operations Research/Decision Theory
Optimization
Regularization
Theory of Computation
title Regularized step directions in nonlinear conjugate gradient methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20step%20directions%20in%20nonlinear%20conjugate%20gradient%20methods&rft.jtitle=Mathematical%20programming%20computation&rft.au=Buhler,%20Cassidy%20K.&rft.date=2024-12-01&rft.volume=16&rft.issue=4&rft.spage=629&rft.epage=664&rft.pages=629-664&rft.issn=1867-2949&rft.eissn=1867-2957&rft_id=info:doi/10.1007/s12532-024-00265-9&rft_dat=%3Cproquest_cross%3E3126032667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126032667&rft_id=info:pmid/&rfr_iscdi=true