Regularized step directions in nonlinear conjugate gradient methods
Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used. We focus on the use of cubic regularization to improve the CGM direction independent of the step length computation. In this paper, we propose the Hybrid Cubic Regularization of CGM, where regularized steps...
Gespeichert in:
Veröffentlicht in: | Mathematical programming computation 2024-12, Vol.16 (4), p.629-664 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 664 |
---|---|
container_issue | 4 |
container_start_page | 629 |
container_title | Mathematical programming computation |
container_volume | 16 |
creator | Buhler, Cassidy K. Benson, Hande Y. Shanno, David F. |
description | Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used. We focus on the use of cubic regularization to improve the CGM direction independent of the step length computation. In this paper, we propose the Hybrid Cubic Regularization of CGM, where regularized steps are used selectively. Using Shanno’s reformulation of CGM as a memoryless BFGS method, we derive new formulas for the regularized step direction. We show that the regularized step direction uses the same order of computational burden per iteration as its non-regularized version. Moreover, the Hybrid Cubic Regularization of CGM exhibits global convergence with fewer assumptions. In numerical experiments, the new step directions are shown to require fewer iteration counts, improve runtime, and reduce the need to reset the step direction. Overall, the Hybrid Cubic Regularization of CGM exhibits the same memoryless and matrix-free properties, while outperforming CGM as a memoryless BFGS method in iterations and runtime. |
doi_str_mv | 10.1007/s12532-024-00265-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126032667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126032667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-89066f015a166d53d90b4af33ed7dce5e147c255845b8c76a9bd1d827d4266343</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOIzzB1wFXEfzTrOUwRcMCKLrkDa3tcNMOibpQn-91YruvJt7F-ecy_kQOmf0klFqrjLjSnBCuSSUcq2IPUILVmlDuFXm-PeW9hStct7SaQQ3lbALtH6Cbtz51H9AwLnAAYc-QVP6IWbcRxyHuOsj-ISbIW7HzhfAXfKhh1jwHsrrEPIZOmn9LsPqZy_Ry-3N8_qebB7vHtbXG9JwKQupLNW6pUx5pnVQIlhaS98KAcGEBhQwaRquVCVVXTVGe1sHFipuguRaCymW6GLOPaThbYRc3HYYU5xeOsG4njppbSYVn1VNGnJO0LpD6vc-vTtG3RcvN_NyEy_3zcvZySRmU57EsYP0F_2P6xPKpmzz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126032667</pqid></control><display><type>article</type><title>Regularized step directions in nonlinear conjugate gradient methods</title><source>SpringerLink Journals - AutoHoldings</source><creator>Buhler, Cassidy K. ; Benson, Hande Y. ; Shanno, David F.</creator><creatorcontrib>Buhler, Cassidy K. ; Benson, Hande Y. ; Shanno, David F.</creatorcontrib><description>Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used. We focus on the use of cubic regularization to improve the CGM direction independent of the step length computation. In this paper, we propose the Hybrid Cubic Regularization of CGM, where regularized steps are used selectively. Using Shanno’s reformulation of CGM as a memoryless BFGS method, we derive new formulas for the regularized step direction. We show that the regularized step direction uses the same order of computational burden per iteration as its non-regularized version. Moreover, the Hybrid Cubic Regularization of CGM exhibits global convergence with fewer assumptions. In numerical experiments, the new step directions are shown to require fewer iteration counts, improve runtime, and reduce the need to reset the step direction. Overall, the Hybrid Cubic Regularization of CGM exhibits the same memoryless and matrix-free properties, while outperforming CGM as a memoryless BFGS method in iterations and runtime.</description><identifier>ISSN: 1867-2949</identifier><identifier>EISSN: 1867-2957</identifier><identifier>DOI: 10.1007/s12532-024-00265-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Conjugate gradient method ; Full Length Paper ; Iterative methods ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Optimization ; Regularization ; Theory of Computation</subject><ispartof>Mathematical programming computation, 2024-12, Vol.16 (4), p.629-664</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-89066f015a166d53d90b4af33ed7dce5e147c255845b8c76a9bd1d827d4266343</cites><orcidid>0000-0003-4157-4273 ; 0000-0002-5554-9928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12532-024-00265-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12532-024-00265-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Buhler, Cassidy K.</creatorcontrib><creatorcontrib>Benson, Hande Y.</creatorcontrib><creatorcontrib>Shanno, David F.</creatorcontrib><title>Regularized step directions in nonlinear conjugate gradient methods</title><title>Mathematical programming computation</title><addtitle>Math. Prog. Comp</addtitle><description>Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used. We focus on the use of cubic regularization to improve the CGM direction independent of the step length computation. In this paper, we propose the Hybrid Cubic Regularization of CGM, where regularized steps are used selectively. Using Shanno’s reformulation of CGM as a memoryless BFGS method, we derive new formulas for the regularized step direction. We show that the regularized step direction uses the same order of computational burden per iteration as its non-regularized version. Moreover, the Hybrid Cubic Regularization of CGM exhibits global convergence with fewer assumptions. In numerical experiments, the new step directions are shown to require fewer iteration counts, improve runtime, and reduce the need to reset the step direction. Overall, the Hybrid Cubic Regularization of CGM exhibits the same memoryless and matrix-free properties, while outperforming CGM as a memoryless BFGS method in iterations and runtime.</description><subject>Conjugate gradient method</subject><subject>Full Length Paper</subject><subject>Iterative methods</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Theory of Computation</subject><issn>1867-2949</issn><issn>1867-2957</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLxDAUhYMoOIzzB1wFXEfzTrOUwRcMCKLrkDa3tcNMOibpQn-91YruvJt7F-ecy_kQOmf0klFqrjLjSnBCuSSUcq2IPUILVmlDuFXm-PeW9hStct7SaQQ3lbALtH6Cbtz51H9AwLnAAYc-QVP6IWbcRxyHuOsj-ISbIW7HzhfAXfKhh1jwHsrrEPIZOmn9LsPqZy_Ry-3N8_qebB7vHtbXG9JwKQupLNW6pUx5pnVQIlhaS98KAcGEBhQwaRquVCVVXTVGe1sHFipuguRaCymW6GLOPaThbYRc3HYYU5xeOsG4njppbSYVn1VNGnJO0LpD6vc-vTtG3RcvN_NyEy_3zcvZySRmU57EsYP0F_2P6xPKpmzz</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Buhler, Cassidy K.</creator><creator>Benson, Hande Y.</creator><creator>Shanno, David F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4157-4273</orcidid><orcidid>https://orcid.org/0000-0002-5554-9928</orcidid></search><sort><creationdate>20241201</creationdate><title>Regularized step directions in nonlinear conjugate gradient methods</title><author>Buhler, Cassidy K. ; Benson, Hande Y. ; Shanno, David F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-89066f015a166d53d90b4af33ed7dce5e147c255845b8c76a9bd1d827d4266343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Conjugate gradient method</topic><topic>Full Length Paper</topic><topic>Iterative methods</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buhler, Cassidy K.</creatorcontrib><creatorcontrib>Benson, Hande Y.</creatorcontrib><creatorcontrib>Shanno, David F.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematical programming computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buhler, Cassidy K.</au><au>Benson, Hande Y.</au><au>Shanno, David F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized step directions in nonlinear conjugate gradient methods</atitle><jtitle>Mathematical programming computation</jtitle><stitle>Math. Prog. Comp</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>4</issue><spage>629</spage><epage>664</epage><pages>629-664</pages><issn>1867-2949</issn><eissn>1867-2957</eissn><abstract>Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used. We focus on the use of cubic regularization to improve the CGM direction independent of the step length computation. In this paper, we propose the Hybrid Cubic Regularization of CGM, where regularized steps are used selectively. Using Shanno’s reformulation of CGM as a memoryless BFGS method, we derive new formulas for the regularized step direction. We show that the regularized step direction uses the same order of computational burden per iteration as its non-regularized version. Moreover, the Hybrid Cubic Regularization of CGM exhibits global convergence with fewer assumptions. In numerical experiments, the new step directions are shown to require fewer iteration counts, improve runtime, and reduce the need to reset the step direction. Overall, the Hybrid Cubic Regularization of CGM exhibits the same memoryless and matrix-free properties, while outperforming CGM as a memoryless BFGS method in iterations and runtime.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12532-024-00265-9</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0003-4157-4273</orcidid><orcidid>https://orcid.org/0000-0002-5554-9928</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-2949 |
ispartof | Mathematical programming computation, 2024-12, Vol.16 (4), p.629-664 |
issn | 1867-2949 1867-2957 |
language | eng |
recordid | cdi_proquest_journals_3126032667 |
source | SpringerLink Journals - AutoHoldings |
subjects | Conjugate gradient method Full Length Paper Iterative methods Mathematics Mathematics and Statistics Mathematics of Computing Operations Research/Decision Theory Optimization Regularization Theory of Computation |
title | Regularized step directions in nonlinear conjugate gradient methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20step%20directions%20in%20nonlinear%20conjugate%20gradient%20methods&rft.jtitle=Mathematical%20programming%20computation&rft.au=Buhler,%20Cassidy%20K.&rft.date=2024-12-01&rft.volume=16&rft.issue=4&rft.spage=629&rft.epage=664&rft.pages=629-664&rft.issn=1867-2949&rft.eissn=1867-2957&rft_id=info:doi/10.1007/s12532-024-00265-9&rft_dat=%3Cproquest_cross%3E3126032667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126032667&rft_id=info:pmid/&rfr_iscdi=true |