Unraveling the Nuclear Debate: Insights Through Clustering of Tweets

The perception of nuclear power, while central to energy policy and sustainability endeavors, remains a subject of considerable debate, in which some claim that the expansion of nuclear technology poses threats to global security, while others argue that its access should be shared for development a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-11, Vol.13 (21), p.4159
Hauptverfasser: Katalinić, Josip, Dunđer, Ivan, Seljan, Sanja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 4159
container_title Electronics (Basel)
container_volume 13
creator Katalinić, Josip
Dunđer, Ivan
Seljan, Sanja
description The perception of nuclear power, while central to energy policy and sustainability endeavors, remains a subject of considerable debate, in which some claim that the expansion of nuclear technology poses threats to global security, while others argue that its access should be shared for development and energy purposes. In this study, a total of 11,256 tweets were gathered over a three-month period using a keyword-based approach through the Twitter Standard Search API, focusing on terms related to nuclear energy. The k-means clustering algorithm was employed to analyze tweets with the aim of determining the underlying sentiments and perspectives within the public domain, while t-SNE was used for visualizing cluster separation. The results show distinct clusters reflecting various viewpoints on nuclear power, with 71.94% of tweets being neutral, 14.64% supportive, and 13.42% negative. This study also identifies a subset of users who appear to be seeking unbiased information, signaling an opportunity for educational outreach. By leveraging the immediacy and pervasiveness of X (formerly known as Twitter), this research provides a timely snapshot of the prevailing attitudes toward nuclear power and offers insights for policymakers, educators, and industry stakeholders.
doi_str_mv 10.3390/electronics13214159
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3126024248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815344802</galeid><sourcerecordid>A815344802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-8345e1a3e21ebc84272c6e483c810fcd5a7ac481a5128f86c89a18af9ca575423</originalsourceid><addsrcrecordid>eNptkDFPwzAQhS0EElXpL2CJxJzis53EZqtaKJUqWNo5ct1zkiqNi-2A-PekKgMDd8M9nd59Jz1C7oFOOVf0EVs00buuMQE4AwGZuiIjRguVKqbY9R99SyYhHOhQCrjkdEQW287rT2ybrkpijclbb1rUPlngTkd8SlZdaKo6hmRTe9dXdTJv-xDRn_3OJpsvxBjuyI3VbcDJ7xyT7cvzZv6art-Xq_lsnRpQeUwlFxmC5sgAd0YKVjCTo5DcSKDW7DNdaCMk6AyYtDI3UmmQ2iqjsyITjI_Jw4V78u6jxxDLg-t9N7wsObCcMsEG2phML65Kt1g2nXXRazP0Ho-NcR3aZtjPJGRcCEnPWH45MN6F4NGWJ98ctf8ugZbniMt_IuY_rkpw2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126024248</pqid></control><display><type>article</type><title>Unraveling the Nuclear Debate: Insights Through Clustering of Tweets</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Katalinić, Josip ; Dunđer, Ivan ; Seljan, Sanja</creator><creatorcontrib>Katalinić, Josip ; Dunđer, Ivan ; Seljan, Sanja</creatorcontrib><description>The perception of nuclear power, while central to energy policy and sustainability endeavors, remains a subject of considerable debate, in which some claim that the expansion of nuclear technology poses threats to global security, while others argue that its access should be shared for development and energy purposes. In this study, a total of 11,256 tweets were gathered over a three-month period using a keyword-based approach through the Twitter Standard Search API, focusing on terms related to nuclear energy. The k-means clustering algorithm was employed to analyze tweets with the aim of determining the underlying sentiments and perspectives within the public domain, while t-SNE was used for visualizing cluster separation. The results show distinct clusters reflecting various viewpoints on nuclear power, with 71.94% of tweets being neutral, 14.64% supportive, and 13.42% negative. This study also identifies a subset of users who appear to be seeking unbiased information, signaling an opportunity for educational outreach. By leveraging the immediacy and pervasiveness of X (formerly known as Twitter), this research provides a timely snapshot of the prevailing attitudes toward nuclear power and offers insights for policymakers, educators, and industry stakeholders.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13214159</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Cluster analysis ; Clustering ; Data collection ; Datasets ; Energy policy ; Energy resources ; Keywords ; Machine learning ; Nuclear energy ; Nuclear energy policy ; Nuclear reactor components ; Perceptions ; Public domain ; Public opinion ; Sentiment analysis ; Social networks ; Sustainability ; Trends ; Vector quantization ; Waste management</subject><ispartof>Electronics (Basel), 2024-11, Vol.13 (21), p.4159</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-8345e1a3e21ebc84272c6e483c810fcd5a7ac481a5128f86c89a18af9ca575423</cites><orcidid>0000-0001-9048-419X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Katalinić, Josip</creatorcontrib><creatorcontrib>Dunđer, Ivan</creatorcontrib><creatorcontrib>Seljan, Sanja</creatorcontrib><title>Unraveling the Nuclear Debate: Insights Through Clustering of Tweets</title><title>Electronics (Basel)</title><description>The perception of nuclear power, while central to energy policy and sustainability endeavors, remains a subject of considerable debate, in which some claim that the expansion of nuclear technology poses threats to global security, while others argue that its access should be shared for development and energy purposes. In this study, a total of 11,256 tweets were gathered over a three-month period using a keyword-based approach through the Twitter Standard Search API, focusing on terms related to nuclear energy. The k-means clustering algorithm was employed to analyze tweets with the aim of determining the underlying sentiments and perspectives within the public domain, while t-SNE was used for visualizing cluster separation. The results show distinct clusters reflecting various viewpoints on nuclear power, with 71.94% of tweets being neutral, 14.64% supportive, and 13.42% negative. This study also identifies a subset of users who appear to be seeking unbiased information, signaling an opportunity for educational outreach. By leveraging the immediacy and pervasiveness of X (formerly known as Twitter), this research provides a timely snapshot of the prevailing attitudes toward nuclear power and offers insights for policymakers, educators, and industry stakeholders.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Energy policy</subject><subject>Energy resources</subject><subject>Keywords</subject><subject>Machine learning</subject><subject>Nuclear energy</subject><subject>Nuclear energy policy</subject><subject>Nuclear reactor components</subject><subject>Perceptions</subject><subject>Public domain</subject><subject>Public opinion</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Sustainability</subject><subject>Trends</subject><subject>Vector quantization</subject><subject>Waste management</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkDFPwzAQhS0EElXpL2CJxJzis53EZqtaKJUqWNo5ct1zkiqNi-2A-PekKgMDd8M9nd59Jz1C7oFOOVf0EVs00buuMQE4AwGZuiIjRguVKqbY9R99SyYhHOhQCrjkdEQW287rT2ybrkpijclbb1rUPlngTkd8SlZdaKo6hmRTe9dXdTJv-xDRn_3OJpsvxBjuyI3VbcDJ7xyT7cvzZv6art-Xq_lsnRpQeUwlFxmC5sgAd0YKVjCTo5DcSKDW7DNdaCMk6AyYtDI3UmmQ2iqjsyITjI_Jw4V78u6jxxDLg-t9N7wsObCcMsEG2phML65Kt1g2nXXRazP0Ho-NcR3aZtjPJGRcCEnPWH45MN6F4NGWJ98ctf8ugZbniMt_IuY_rkpw2g</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Katalinić, Josip</creator><creator>Dunđer, Ivan</creator><creator>Seljan, Sanja</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9048-419X</orcidid></search><sort><creationdate>20241101</creationdate><title>Unraveling the Nuclear Debate: Insights Through Clustering of Tweets</title><author>Katalinić, Josip ; Dunđer, Ivan ; Seljan, Sanja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-8345e1a3e21ebc84272c6e483c810fcd5a7ac481a5128f86c89a18af9ca575423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Energy policy</topic><topic>Energy resources</topic><topic>Keywords</topic><topic>Machine learning</topic><topic>Nuclear energy</topic><topic>Nuclear energy policy</topic><topic>Nuclear reactor components</topic><topic>Perceptions</topic><topic>Public domain</topic><topic>Public opinion</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Sustainability</topic><topic>Trends</topic><topic>Vector quantization</topic><topic>Waste management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katalinić, Josip</creatorcontrib><creatorcontrib>Dunđer, Ivan</creatorcontrib><creatorcontrib>Seljan, Sanja</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katalinić, Josip</au><au>Dunđer, Ivan</au><au>Seljan, Sanja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Nuclear Debate: Insights Through Clustering of Tweets</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>13</volume><issue>21</issue><spage>4159</spage><pages>4159-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The perception of nuclear power, while central to energy policy and sustainability endeavors, remains a subject of considerable debate, in which some claim that the expansion of nuclear technology poses threats to global security, while others argue that its access should be shared for development and energy purposes. In this study, a total of 11,256 tweets were gathered over a three-month period using a keyword-based approach through the Twitter Standard Search API, focusing on terms related to nuclear energy. The k-means clustering algorithm was employed to analyze tweets with the aim of determining the underlying sentiments and perspectives within the public domain, while t-SNE was used for visualizing cluster separation. The results show distinct clusters reflecting various viewpoints on nuclear power, with 71.94% of tweets being neutral, 14.64% supportive, and 13.42% negative. This study also identifies a subset of users who appear to be seeking unbiased information, signaling an opportunity for educational outreach. By leveraging the immediacy and pervasiveness of X (formerly known as Twitter), this research provides a timely snapshot of the prevailing attitudes toward nuclear power and offers insights for policymakers, educators, and industry stakeholders.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13214159</doi><orcidid>https://orcid.org/0000-0001-9048-419X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-11, Vol.13 (21), p.4159
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3126024248
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Analysis
Cluster analysis
Clustering
Data collection
Datasets
Energy policy
Energy resources
Keywords
Machine learning
Nuclear energy
Nuclear energy policy
Nuclear reactor components
Perceptions
Public domain
Public opinion
Sentiment analysis
Social networks
Sustainability
Trends
Vector quantization
Waste management
title Unraveling the Nuclear Debate: Insights Through Clustering of Tweets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Nuclear%20Debate:%20Insights%20Through%20Clustering%20of%20Tweets&rft.jtitle=Electronics%20(Basel)&rft.au=Katalini%C4%87,%20Josip&rft.date=2024-11-01&rft.volume=13&rft.issue=21&rft.spage=4159&rft.pages=4159-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13214159&rft_dat=%3Cgale_proqu%3EA815344802%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126024248&rft_id=info:pmid/&rft_galeid=A815344802&rfr_iscdi=true