Unravelling genetic diversity and population structure of sweetpotato (Ipomoea batatas (L.) Lam) through microsatellite markers
Sweetpotato ( Ipomoea batatas (L.) Lam), a vital root crop cultivated globally by small and marginal farmers, plays a pivotal role in combatting malnutrition and serves as a lifeline for underdeveloped nations. In order to optimize the utilization of germplasm for breeding purposes, it is crucial to...
Gespeichert in:
Veröffentlicht in: | Genetic resources and crop evolution 2024-12, Vol.71 (8), p.4183-4196 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4196 |
---|---|
container_issue | 8 |
container_start_page | 4183 |
container_title | Genetic resources and crop evolution |
container_volume | 71 |
creator | Mounika, Vadde Deo, Chandra Shadap, Arwankie Kisan, Nimbolkar Prashant Singh, Siddhartha Raja, P. Gowd, Talamarla Yeswanth Mahidar Abhijith, Krishnan P. |
description | Sweetpotato (
Ipomoea batatas
(L.) Lam), a vital root crop cultivated globally by small and marginal farmers, plays a pivotal role in combatting malnutrition and serves as a lifeline for underdeveloped nations. In order to optimize the utilization of germplasm for breeding purposes, it is crucial to comprehend the extent of genetic diversity it encompasses. The effective utilization of genetic diversity in germplasm resources hinges on assessing genetic relationships among diverse cultivars and landraces, facilitating improved breeding programs and sustainable agricultural practices. In this study, 31 sweetpotato genotypes were examined to assess genetic diversity using 21 simple sequence repeat (SSR) markers. A total of 704 amplicons were detected, averaging 33.52 per marker. Band frequency ranged from 0.33 to 0.69, while polymorphic information content ranged from 0.03 to 0.61. Utilizing the Dice similarity coefficient, the 31 genotypes were clustered into three primary clusters, demonstrating similarity scores from 0.09 to 0.92. Subsequent subdivision of these clusters revealed nuanced relationships within the dataset. Population structure analysis uncovered two well-stratified subpopulations, Subpop1 and Subpop2, with Fst values of 0.49 and 0.23, respectively. Average distances within Subpop1 and Subpop2 were 0.26 and 0.33, and the estimated allele-frequency divergence was 0.21. The SSR markers utilized in this study proved to be informative and polymorphic, offering insights into the genetic diversity of sweetpotato. These markers hold significant potential for enhancing breeding programs aimed at improving elite progenies in the future. |
doi_str_mv | 10.1007/s10722-024-01881-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3125867651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3125867651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-a1988e977d6069a0565fb8dff7183454cd8d639d6eb88e3afd666ddc27a250663</originalsourceid><addsrcrecordid>eNp9kD1PwzAYhC0EEqXwB5gssbRDip3EHxlRxUelSCx0ttzYSVOSONhOUbvw13EJEhvTq1e65-50ANxitMAIsXuHEYvjCMVphDDnODqegQkmLIkIRtk5mKAsJlHGaXoJrpzbIYQyRvkEfK07K_e6aequgpXutK8LqOq9tq72Byg7BXvTD430temg83Yo_GA1NCV0n1r73njpDZytetMaLeFGhl86OMsXc5jLdg791pqh2sK2Lqxx0p-yvIattO8h5BpclLJx-ub3TsH66fFt-RLlr8-r5UMeFTFDPpI441xnjCmKaCYRoaTccFWWDPMkJWmhuKJJpqjeBF0iS0UpVSrAMiaI0mQK7kbf3pqPQTsvdmawXYgUCY4Jp4wSHFTxqDpVdVaXord1aHoQGInT0GIcWoShxc_Q4higZIRcEHeVtn_W_1Dfx0iDtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125867651</pqid></control><display><type>article</type><title>Unravelling genetic diversity and population structure of sweetpotato (Ipomoea batatas (L.) Lam) through microsatellite markers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mounika, Vadde ; Deo, Chandra ; Shadap, Arwankie ; Kisan, Nimbolkar Prashant ; Singh, Siddhartha ; Raja, P. ; Gowd, Talamarla Yeswanth Mahidar ; Abhijith, Krishnan P.</creator><creatorcontrib>Mounika, Vadde ; Deo, Chandra ; Shadap, Arwankie ; Kisan, Nimbolkar Prashant ; Singh, Siddhartha ; Raja, P. ; Gowd, Talamarla Yeswanth Mahidar ; Abhijith, Krishnan P.</creatorcontrib><description>Sweetpotato (
Ipomoea batatas
(L.) Lam), a vital root crop cultivated globally by small and marginal farmers, plays a pivotal role in combatting malnutrition and serves as a lifeline for underdeveloped nations. In order to optimize the utilization of germplasm for breeding purposes, it is crucial to comprehend the extent of genetic diversity it encompasses. The effective utilization of genetic diversity in germplasm resources hinges on assessing genetic relationships among diverse cultivars and landraces, facilitating improved breeding programs and sustainable agricultural practices. In this study, 31 sweetpotato genotypes were examined to assess genetic diversity using 21 simple sequence repeat (SSR) markers. A total of 704 amplicons were detected, averaging 33.52 per marker. Band frequency ranged from 0.33 to 0.69, while polymorphic information content ranged from 0.03 to 0.61. Utilizing the Dice similarity coefficient, the 31 genotypes were clustered into three primary clusters, demonstrating similarity scores from 0.09 to 0.92. Subsequent subdivision of these clusters revealed nuanced relationships within the dataset. Population structure analysis uncovered two well-stratified subpopulations, Subpop1 and Subpop2, with Fst values of 0.49 and 0.23, respectively. Average distances within Subpop1 and Subpop2 were 0.26 and 0.33, and the estimated allele-frequency divergence was 0.21. The SSR markers utilized in this study proved to be informative and polymorphic, offering insights into the genetic diversity of sweetpotato. These markers hold significant potential for enhancing breeding programs aimed at improving elite progenies in the future.</description><identifier>ISSN: 0925-9864</identifier><identifier>EISSN: 1573-5109</identifier><identifier>DOI: 10.1007/s10722-024-01881-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agricultural practices ; Agriculture ; Biomedical and Life Sciences ; Cluster analysis ; Cultivars ; Gene frequency ; Genetic diversity ; Genetic markers ; Genetic relationship ; Genotypes ; Germplasm ; Information processing ; Ipomoea batatas ; Life Sciences ; Malnutrition ; Microsatellites ; Plant breeding ; Plant Genetics and Genomics ; Plant Physiology ; Plant Sciences ; Plant Systematics/Taxonomy/Biogeography ; Population genetics ; Population structure ; Research Article ; Structural analysis ; Subpopulations ; Sustainable agriculture ; Sustainable practices ; Sweet potatoes</subject><ispartof>Genetic resources and crop evolution, 2024-12, Vol.71 (8), p.4183-4196</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-a1988e977d6069a0565fb8dff7183454cd8d639d6eb88e3afd666ddc27a250663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10722-024-01881-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10722-024-01881-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Mounika, Vadde</creatorcontrib><creatorcontrib>Deo, Chandra</creatorcontrib><creatorcontrib>Shadap, Arwankie</creatorcontrib><creatorcontrib>Kisan, Nimbolkar Prashant</creatorcontrib><creatorcontrib>Singh, Siddhartha</creatorcontrib><creatorcontrib>Raja, P.</creatorcontrib><creatorcontrib>Gowd, Talamarla Yeswanth Mahidar</creatorcontrib><creatorcontrib>Abhijith, Krishnan P.</creatorcontrib><title>Unravelling genetic diversity and population structure of sweetpotato (Ipomoea batatas (L.) Lam) through microsatellite markers</title><title>Genetic resources and crop evolution</title><addtitle>Genet Resour Crop Evol</addtitle><description>Sweetpotato (
Ipomoea batatas
(L.) Lam), a vital root crop cultivated globally by small and marginal farmers, plays a pivotal role in combatting malnutrition and serves as a lifeline for underdeveloped nations. In order to optimize the utilization of germplasm for breeding purposes, it is crucial to comprehend the extent of genetic diversity it encompasses. The effective utilization of genetic diversity in germplasm resources hinges on assessing genetic relationships among diverse cultivars and landraces, facilitating improved breeding programs and sustainable agricultural practices. In this study, 31 sweetpotato genotypes were examined to assess genetic diversity using 21 simple sequence repeat (SSR) markers. A total of 704 amplicons were detected, averaging 33.52 per marker. Band frequency ranged from 0.33 to 0.69, while polymorphic information content ranged from 0.03 to 0.61. Utilizing the Dice similarity coefficient, the 31 genotypes were clustered into three primary clusters, demonstrating similarity scores from 0.09 to 0.92. Subsequent subdivision of these clusters revealed nuanced relationships within the dataset. Population structure analysis uncovered two well-stratified subpopulations, Subpop1 and Subpop2, with Fst values of 0.49 and 0.23, respectively. Average distances within Subpop1 and Subpop2 were 0.26 and 0.33, and the estimated allele-frequency divergence was 0.21. The SSR markers utilized in this study proved to be informative and polymorphic, offering insights into the genetic diversity of sweetpotato. These markers hold significant potential for enhancing breeding programs aimed at improving elite progenies in the future.</description><subject>Agricultural practices</subject><subject>Agriculture</subject><subject>Biomedical and Life Sciences</subject><subject>Cluster analysis</subject><subject>Cultivars</subject><subject>Gene frequency</subject><subject>Genetic diversity</subject><subject>Genetic markers</subject><subject>Genetic relationship</subject><subject>Genotypes</subject><subject>Germplasm</subject><subject>Information processing</subject><subject>Ipomoea batatas</subject><subject>Life Sciences</subject><subject>Malnutrition</subject><subject>Microsatellites</subject><subject>Plant breeding</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plant Systematics/Taxonomy/Biogeography</subject><subject>Population genetics</subject><subject>Population structure</subject><subject>Research Article</subject><subject>Structural analysis</subject><subject>Subpopulations</subject><subject>Sustainable agriculture</subject><subject>Sustainable practices</subject><subject>Sweet potatoes</subject><issn>0925-9864</issn><issn>1573-5109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAYhC0EEqXwB5gssbRDip3EHxlRxUelSCx0ttzYSVOSONhOUbvw13EJEhvTq1e65-50ANxitMAIsXuHEYvjCMVphDDnODqegQkmLIkIRtk5mKAsJlHGaXoJrpzbIYQyRvkEfK07K_e6aequgpXutK8LqOq9tq72Byg7BXvTD430temg83Yo_GA1NCV0n1r73njpDZytetMaLeFGhl86OMsXc5jLdg791pqh2sK2Lqxx0p-yvIattO8h5BpclLJx-ub3TsH66fFt-RLlr8-r5UMeFTFDPpI441xnjCmKaCYRoaTccFWWDPMkJWmhuKJJpqjeBF0iS0UpVSrAMiaI0mQK7kbf3pqPQTsvdmawXYgUCY4Jp4wSHFTxqDpVdVaXord1aHoQGInT0GIcWoShxc_Q4higZIRcEHeVtn_W_1Dfx0iDtw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Mounika, Vadde</creator><creator>Deo, Chandra</creator><creator>Shadap, Arwankie</creator><creator>Kisan, Nimbolkar Prashant</creator><creator>Singh, Siddhartha</creator><creator>Raja, P.</creator><creator>Gowd, Talamarla Yeswanth Mahidar</creator><creator>Abhijith, Krishnan P.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Unravelling genetic diversity and population structure of sweetpotato (Ipomoea batatas (L.) Lam) through microsatellite markers</title><author>Mounika, Vadde ; Deo, Chandra ; Shadap, Arwankie ; Kisan, Nimbolkar Prashant ; Singh, Siddhartha ; Raja, P. ; Gowd, Talamarla Yeswanth Mahidar ; Abhijith, Krishnan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-a1988e977d6069a0565fb8dff7183454cd8d639d6eb88e3afd666ddc27a250663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural practices</topic><topic>Agriculture</topic><topic>Biomedical and Life Sciences</topic><topic>Cluster analysis</topic><topic>Cultivars</topic><topic>Gene frequency</topic><topic>Genetic diversity</topic><topic>Genetic markers</topic><topic>Genetic relationship</topic><topic>Genotypes</topic><topic>Germplasm</topic><topic>Information processing</topic><topic>Ipomoea batatas</topic><topic>Life Sciences</topic><topic>Malnutrition</topic><topic>Microsatellites</topic><topic>Plant breeding</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plant Systematics/Taxonomy/Biogeography</topic><topic>Population genetics</topic><topic>Population structure</topic><topic>Research Article</topic><topic>Structural analysis</topic><topic>Subpopulations</topic><topic>Sustainable agriculture</topic><topic>Sustainable practices</topic><topic>Sweet potatoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mounika, Vadde</creatorcontrib><creatorcontrib>Deo, Chandra</creatorcontrib><creatorcontrib>Shadap, Arwankie</creatorcontrib><creatorcontrib>Kisan, Nimbolkar Prashant</creatorcontrib><creatorcontrib>Singh, Siddhartha</creatorcontrib><creatorcontrib>Raja, P.</creatorcontrib><creatorcontrib>Gowd, Talamarla Yeswanth Mahidar</creatorcontrib><creatorcontrib>Abhijith, Krishnan P.</creatorcontrib><collection>CrossRef</collection><jtitle>Genetic resources and crop evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mounika, Vadde</au><au>Deo, Chandra</au><au>Shadap, Arwankie</au><au>Kisan, Nimbolkar Prashant</au><au>Singh, Siddhartha</au><au>Raja, P.</au><au>Gowd, Talamarla Yeswanth Mahidar</au><au>Abhijith, Krishnan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unravelling genetic diversity and population structure of sweetpotato (Ipomoea batatas (L.) Lam) through microsatellite markers</atitle><jtitle>Genetic resources and crop evolution</jtitle><stitle>Genet Resour Crop Evol</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>71</volume><issue>8</issue><spage>4183</spage><epage>4196</epage><pages>4183-4196</pages><issn>0925-9864</issn><eissn>1573-5109</eissn><abstract>Sweetpotato (
Ipomoea batatas
(L.) Lam), a vital root crop cultivated globally by small and marginal farmers, plays a pivotal role in combatting malnutrition and serves as a lifeline for underdeveloped nations. In order to optimize the utilization of germplasm for breeding purposes, it is crucial to comprehend the extent of genetic diversity it encompasses. The effective utilization of genetic diversity in germplasm resources hinges on assessing genetic relationships among diverse cultivars and landraces, facilitating improved breeding programs and sustainable agricultural practices. In this study, 31 sweetpotato genotypes were examined to assess genetic diversity using 21 simple sequence repeat (SSR) markers. A total of 704 amplicons were detected, averaging 33.52 per marker. Band frequency ranged from 0.33 to 0.69, while polymorphic information content ranged from 0.03 to 0.61. Utilizing the Dice similarity coefficient, the 31 genotypes were clustered into three primary clusters, demonstrating similarity scores from 0.09 to 0.92. Subsequent subdivision of these clusters revealed nuanced relationships within the dataset. Population structure analysis uncovered two well-stratified subpopulations, Subpop1 and Subpop2, with Fst values of 0.49 and 0.23, respectively. Average distances within Subpop1 and Subpop2 were 0.26 and 0.33, and the estimated allele-frequency divergence was 0.21. The SSR markers utilized in this study proved to be informative and polymorphic, offering insights into the genetic diversity of sweetpotato. These markers hold significant potential for enhancing breeding programs aimed at improving elite progenies in the future.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10722-024-01881-z</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9864 |
ispartof | Genetic resources and crop evolution, 2024-12, Vol.71 (8), p.4183-4196 |
issn | 0925-9864 1573-5109 |
language | eng |
recordid | cdi_proquest_journals_3125867651 |
source | SpringerLink Journals - AutoHoldings |
subjects | Agricultural practices Agriculture Biomedical and Life Sciences Cluster analysis Cultivars Gene frequency Genetic diversity Genetic markers Genetic relationship Genotypes Germplasm Information processing Ipomoea batatas Life Sciences Malnutrition Microsatellites Plant breeding Plant Genetics and Genomics Plant Physiology Plant Sciences Plant Systematics/Taxonomy/Biogeography Population genetics Population structure Research Article Structural analysis Subpopulations Sustainable agriculture Sustainable practices Sweet potatoes |
title | Unravelling genetic diversity and population structure of sweetpotato (Ipomoea batatas (L.) Lam) through microsatellite markers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unravelling%20genetic%20diversity%20and%20population%20structure%20of%20sweetpotato%20(Ipomoea%20batatas%20(L.)%20Lam)%20through%20microsatellite%20markers&rft.jtitle=Genetic%20resources%20and%20crop%20evolution&rft.au=Mounika,%20Vadde&rft.date=2024-12-01&rft.volume=71&rft.issue=8&rft.spage=4183&rft.epage=4196&rft.pages=4183-4196&rft.issn=0925-9864&rft.eissn=1573-5109&rft_id=info:doi/10.1007/s10722-024-01881-z&rft_dat=%3Cproquest_cross%3E3125867651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3125867651&rft_id=info:pmid/&rfr_iscdi=true |