A fast consistent grid-based clustering algorithm
We propose a fast consistent grid-based algorithm that estimates the number of clusters for observations in and, besides, constructs an approximation for the clusters. Consistency is proved under certain conditions. The time complexity of the algorithm can be made linear retaining the consistency. N...
Gespeichert in:
Veröffentlicht in: | Pattern analysis and applications : PAA 2024-12, Vol.27 (4), Article 139 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Pattern analysis and applications : PAA |
container_volume | 27 |
creator | Tarasenko, Anton S. Berikov, Vladimir B. Pestunov, Igor A. Rylov, Sergey A. Ruzankin, Pavel S. |
description | We propose a fast consistent grid-based algorithm that estimates the number of clusters for observations in
and, besides, constructs an approximation for the clusters. Consistency is proved under certain conditions. The time complexity of the algorithm can be made linear retaining the consistency. Numerical experiments confirm high computational efficiency of the new algorithm and its ability to process large datasets. |
doi_str_mv | 10.1007/s10044-024-01354-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3125403640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3125403640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-86d2b9061b69de9d739699fa2ddd7a643e38a256faa5d2d646f3b0833e9bc9893</originalsourceid><addsrcrecordid>eNp9UMFKxDAQDaLgWv0BTwXP0SSTpM1xWdQVFrwoeAtpk9Yu3bYm6cG_N2tFbx7em2GY94Z5CF1TcksJKe5CYs4xYQkUROITtKIcABdCvJ3-9pyeo4sQ9oQAACtXiK7zxoSY1-MQuhDdEPPWdxZXJjib1_2cZr4b2tz07ei7-H64RGeN6YO7-qkZen24f9ls8e758Wmz3uGaERJxKS2rFJG0kso6ZQtQUqnGMGttYSQHB6VhQjbGCMus5LKBipQATlW1KhVk6Gbxnfz4MbsQ9X6c_ZBOaqBMcAIyIUNs2ar9GIJ3jZ58dzD-U1Oij9HoJRqdotHf0eijCBZRmI6_Of9n_Y_qC5coZX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125403640</pqid></control><display><type>article</type><title>A fast consistent grid-based clustering algorithm</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tarasenko, Anton S. ; Berikov, Vladimir B. ; Pestunov, Igor A. ; Rylov, Sergey A. ; Ruzankin, Pavel S.</creator><creatorcontrib>Tarasenko, Anton S. ; Berikov, Vladimir B. ; Pestunov, Igor A. ; Rylov, Sergey A. ; Ruzankin, Pavel S.</creatorcontrib><description>We propose a fast consistent grid-based algorithm that estimates the number of clusters for observations in
and, besides, constructs an approximation for the clusters. Consistency is proved under certain conditions. The time complexity of the algorithm can be made linear retaining the consistency. Numerical experiments confirm high computational efficiency of the new algorithm and its ability to process large datasets.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-024-01354-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Clustering ; Computer Science ; Pattern Recognition ; Theoretical Advances</subject><ispartof>Pattern analysis and applications : PAA, 2024-12, Vol.27 (4), Article 139</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-86d2b9061b69de9d739699fa2ddd7a643e38a256faa5d2d646f3b0833e9bc9893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10044-024-01354-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10044-024-01354-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tarasenko, Anton S.</creatorcontrib><creatorcontrib>Berikov, Vladimir B.</creatorcontrib><creatorcontrib>Pestunov, Igor A.</creatorcontrib><creatorcontrib>Rylov, Sergey A.</creatorcontrib><creatorcontrib>Ruzankin, Pavel S.</creatorcontrib><title>A fast consistent grid-based clustering algorithm</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>We propose a fast consistent grid-based algorithm that estimates the number of clusters for observations in
and, besides, constructs an approximation for the clusters. Consistency is proved under certain conditions. The time complexity of the algorithm can be made linear retaining the consistency. Numerical experiments confirm high computational efficiency of the new algorithm and its ability to process large datasets.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Pattern Recognition</subject><subject>Theoretical Advances</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKxDAQDaLgWv0BTwXP0SSTpM1xWdQVFrwoeAtpk9Yu3bYm6cG_N2tFbx7em2GY94Z5CF1TcksJKe5CYs4xYQkUROITtKIcABdCvJ3-9pyeo4sQ9oQAACtXiK7zxoSY1-MQuhDdEPPWdxZXJjib1_2cZr4b2tz07ei7-H64RGeN6YO7-qkZen24f9ls8e758Wmz3uGaERJxKS2rFJG0kso6ZQtQUqnGMGttYSQHB6VhQjbGCMus5LKBipQATlW1KhVk6Gbxnfz4MbsQ9X6c_ZBOaqBMcAIyIUNs2ar9GIJ3jZ58dzD-U1Oij9HoJRqdotHf0eijCBZRmI6_Of9n_Y_qC5coZX8</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Tarasenko, Anton S.</creator><creator>Berikov, Vladimir B.</creator><creator>Pestunov, Igor A.</creator><creator>Rylov, Sergey A.</creator><creator>Ruzankin, Pavel S.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>A fast consistent grid-based clustering algorithm</title><author>Tarasenko, Anton S. ; Berikov, Vladimir B. ; Pestunov, Igor A. ; Rylov, Sergey A. ; Ruzankin, Pavel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-86d2b9061b69de9d739699fa2ddd7a643e38a256faa5d2d646f3b0833e9bc9893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Pattern Recognition</topic><topic>Theoretical Advances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarasenko, Anton S.</creatorcontrib><creatorcontrib>Berikov, Vladimir B.</creatorcontrib><creatorcontrib>Pestunov, Igor A.</creatorcontrib><creatorcontrib>Rylov, Sergey A.</creatorcontrib><creatorcontrib>Ruzankin, Pavel S.</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarasenko, Anton S.</au><au>Berikov, Vladimir B.</au><au>Pestunov, Igor A.</au><au>Rylov, Sergey A.</au><au>Ruzankin, Pavel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast consistent grid-based clustering algorithm</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>27</volume><issue>4</issue><artnum>139</artnum><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>We propose a fast consistent grid-based algorithm that estimates the number of clusters for observations in
and, besides, constructs an approximation for the clusters. Consistency is proved under certain conditions. The time complexity of the algorithm can be made linear retaining the consistency. Numerical experiments confirm high computational efficiency of the new algorithm and its ability to process large datasets.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10044-024-01354-0</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7541 |
ispartof | Pattern analysis and applications : PAA, 2024-12, Vol.27 (4), Article 139 |
issn | 1433-7541 1433-755X |
language | eng |
recordid | cdi_proquest_journals_3125403640 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Clustering Computer Science Pattern Recognition Theoretical Advances |
title | A fast consistent grid-based clustering algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20consistent%20grid-based%20clustering%20algorithm&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Tarasenko,%20Anton%20S.&rft.date=2024-12-01&rft.volume=27&rft.issue=4&rft.artnum=139&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-024-01354-0&rft_dat=%3Cproquest_cross%3E3125403640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3125403640&rft_id=info:pmid/&rfr_iscdi=true |