A fast consistent grid-based clustering algorithm

We propose a fast consistent grid-based algorithm that estimates the number of clusters for observations in and, besides, constructs an approximation for the clusters. Consistency is proved under certain conditions. The time complexity of the algorithm can be made linear retaining the consistency. N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern analysis and applications : PAA 2024-12, Vol.27 (4), Article 139
Hauptverfasser: Tarasenko, Anton S., Berikov, Vladimir B., Pestunov, Igor A., Rylov, Sergey A., Ruzankin, Pavel S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Pattern analysis and applications : PAA
container_volume 27
creator Tarasenko, Anton S.
Berikov, Vladimir B.
Pestunov, Igor A.
Rylov, Sergey A.
Ruzankin, Pavel S.
description We propose a fast consistent grid-based algorithm that estimates the number of clusters for observations in and, besides, constructs an approximation for the clusters. Consistency is proved under certain conditions. The time complexity of the algorithm can be made linear retaining the consistency. Numerical experiments confirm high computational efficiency of the new algorithm and its ability to process large datasets.
doi_str_mv 10.1007/s10044-024-01354-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3125403640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3125403640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-86d2b9061b69de9d739699fa2ddd7a643e38a256faa5d2d646f3b0833e9bc9893</originalsourceid><addsrcrecordid>eNp9UMFKxDAQDaLgWv0BTwXP0SSTpM1xWdQVFrwoeAtpk9Yu3bYm6cG_N2tFbx7em2GY94Z5CF1TcksJKe5CYs4xYQkUROITtKIcABdCvJ3-9pyeo4sQ9oQAACtXiK7zxoSY1-MQuhDdEPPWdxZXJjib1_2cZr4b2tz07ei7-H64RGeN6YO7-qkZen24f9ls8e758Wmz3uGaERJxKS2rFJG0kso6ZQtQUqnGMGttYSQHB6VhQjbGCMus5LKBipQATlW1KhVk6Gbxnfz4MbsQ9X6c_ZBOaqBMcAIyIUNs2ar9GIJ3jZ58dzD-U1Oij9HoJRqdotHf0eijCBZRmI6_Of9n_Y_qC5coZX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125403640</pqid></control><display><type>article</type><title>A fast consistent grid-based clustering algorithm</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tarasenko, Anton S. ; Berikov, Vladimir B. ; Pestunov, Igor A. ; Rylov, Sergey A. ; Ruzankin, Pavel S.</creator><creatorcontrib>Tarasenko, Anton S. ; Berikov, Vladimir B. ; Pestunov, Igor A. ; Rylov, Sergey A. ; Ruzankin, Pavel S.</creatorcontrib><description>We propose a fast consistent grid-based algorithm that estimates the number of clusters for observations in and, besides, constructs an approximation for the clusters. Consistency is proved under certain conditions. The time complexity of the algorithm can be made linear retaining the consistency. Numerical experiments confirm high computational efficiency of the new algorithm and its ability to process large datasets.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-024-01354-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Clustering ; Computer Science ; Pattern Recognition ; Theoretical Advances</subject><ispartof>Pattern analysis and applications : PAA, 2024-12, Vol.27 (4), Article 139</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-86d2b9061b69de9d739699fa2ddd7a643e38a256faa5d2d646f3b0833e9bc9893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10044-024-01354-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10044-024-01354-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tarasenko, Anton S.</creatorcontrib><creatorcontrib>Berikov, Vladimir B.</creatorcontrib><creatorcontrib>Pestunov, Igor A.</creatorcontrib><creatorcontrib>Rylov, Sergey A.</creatorcontrib><creatorcontrib>Ruzankin, Pavel S.</creatorcontrib><title>A fast consistent grid-based clustering algorithm</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>We propose a fast consistent grid-based algorithm that estimates the number of clusters for observations in and, besides, constructs an approximation for the clusters. Consistency is proved under certain conditions. The time complexity of the algorithm can be made linear retaining the consistency. Numerical experiments confirm high computational efficiency of the new algorithm and its ability to process large datasets.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Pattern Recognition</subject><subject>Theoretical Advances</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKxDAQDaLgWv0BTwXP0SSTpM1xWdQVFrwoeAtpk9Yu3bYm6cG_N2tFbx7em2GY94Z5CF1TcksJKe5CYs4xYQkUROITtKIcABdCvJ3-9pyeo4sQ9oQAACtXiK7zxoSY1-MQuhDdEPPWdxZXJjib1_2cZr4b2tz07ei7-H64RGeN6YO7-qkZen24f9ls8e758Wmz3uGaERJxKS2rFJG0kso6ZQtQUqnGMGttYSQHB6VhQjbGCMus5LKBipQATlW1KhVk6Gbxnfz4MbsQ9X6c_ZBOaqBMcAIyIUNs2ar9GIJ3jZ58dzD-U1Oij9HoJRqdotHf0eijCBZRmI6_Of9n_Y_qC5coZX8</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Tarasenko, Anton S.</creator><creator>Berikov, Vladimir B.</creator><creator>Pestunov, Igor A.</creator><creator>Rylov, Sergey A.</creator><creator>Ruzankin, Pavel S.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>A fast consistent grid-based clustering algorithm</title><author>Tarasenko, Anton S. ; Berikov, Vladimir B. ; Pestunov, Igor A. ; Rylov, Sergey A. ; Ruzankin, Pavel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-86d2b9061b69de9d739699fa2ddd7a643e38a256faa5d2d646f3b0833e9bc9893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Pattern Recognition</topic><topic>Theoretical Advances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarasenko, Anton S.</creatorcontrib><creatorcontrib>Berikov, Vladimir B.</creatorcontrib><creatorcontrib>Pestunov, Igor A.</creatorcontrib><creatorcontrib>Rylov, Sergey A.</creatorcontrib><creatorcontrib>Ruzankin, Pavel S.</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarasenko, Anton S.</au><au>Berikov, Vladimir B.</au><au>Pestunov, Igor A.</au><au>Rylov, Sergey A.</au><au>Ruzankin, Pavel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast consistent grid-based clustering algorithm</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>27</volume><issue>4</issue><artnum>139</artnum><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>We propose a fast consistent grid-based algorithm that estimates the number of clusters for observations in and, besides, constructs an approximation for the clusters. Consistency is proved under certain conditions. The time complexity of the algorithm can be made linear retaining the consistency. Numerical experiments confirm high computational efficiency of the new algorithm and its ability to process large datasets.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10044-024-01354-0</doi></addata></record>
fulltext fulltext
identifier ISSN: 1433-7541
ispartof Pattern analysis and applications : PAA, 2024-12, Vol.27 (4), Article 139
issn 1433-7541
1433-755X
language eng
recordid cdi_proquest_journals_3125403640
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Clustering
Computer Science
Pattern Recognition
Theoretical Advances
title A fast consistent grid-based clustering algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20consistent%20grid-based%20clustering%20algorithm&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Tarasenko,%20Anton%20S.&rft.date=2024-12-01&rft.volume=27&rft.issue=4&rft.artnum=139&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-024-01354-0&rft_dat=%3Cproquest_cross%3E3125403640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3125403640&rft_id=info:pmid/&rfr_iscdi=true