Topology optimization of link mechanisms for comprehensive synthesis of component arrangement and structure using micropolar elasticity model

This paper proposes a method for topology optimization of link mechanisms with multiple outputs, using a multi-material micropolar elasticity model. This approach allows for comprehensive optimization of both the arrangement and structure of the link mechanism components. By utilizing a continuum mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2024-11, Vol.67 (11), p.190, Article 190
Hauptverfasser: Sayo, Yurika, Yamada, Takayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 190
container_title Structural and multidisciplinary optimization
container_volume 67
creator Sayo, Yurika
Yamada, Takayuki
description This paper proposes a method for topology optimization of link mechanisms with multiple outputs, using a multi-material micropolar elasticity model. This approach allows for comprehensive optimization of both the arrangement and structure of the link mechanism components. By utilizing a continuum model that incorporates micropolar elasticity, we can specify bending stiffness independently from tensile stiffness, resulting in deformation characteristics that approximate a link mechanism. The optimization problem of designing link mechanisms for multiple outputs is reformulated as a boundary value problem within this model framework. The design goal is to synthesize a link mechanism that not only follows a desired path but also possesses the required degrees of freedom. To achieve this, the objective function is defined by the displacement error under external force and the strain energy in the links. The multi-material micropolar elasticity model is then optimized through a gradient-based optimization method, focusing on this objective function. The effectiveness and applicability of our methodology are demonstrated through several numerical case studies.
doi_str_mv 10.1007/s00158-024-03903-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3124956192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124956192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-89442946e092719531aa584f47f0e3549805396c883c918bb241b45cb07cd1903</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKd_wKuA19WTNm2TSxl-wcCbCd6FNEu3zDapSSqr_8H_bLuJV-eF83Dew4PQNYFbAlDeBQCSswRSmkDGIUv2J2hGCpInhDJ2-p_L93N0EcIOABhQPkM_K9e5xm0G7LpoWvMto3EWuxo3xn7gVquttCa0AdfOY-XazuuttsF8aRwGG7c6mDDh08pZbSOW3ku70e0h2zUO0fcq9l7jPhi7wa1RfiqVHutGhmiUiQNu3Vo3l-islk3QV39zjt4eH1aL52T5-vSyuF8mKgWICeOUppwWGnhaEp5nRMqc0ZqWNegsp5xBnvFCMZYpTlhVpZRUNFcVlGpNRj1zdHO823n32esQxc713o6VIiMp5XlBeDpS6ZEa_w3B61p03rTSD4KAmLSLo3YxahcH7WKf_QIlpHkn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124956192</pqid></control><display><type>article</type><title>Topology optimization of link mechanisms for comprehensive synthesis of component arrangement and structure using micropolar elasticity model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sayo, Yurika ; Yamada, Takayuki</creator><creatorcontrib>Sayo, Yurika ; Yamada, Takayuki</creatorcontrib><description>This paper proposes a method for topology optimization of link mechanisms with multiple outputs, using a multi-material micropolar elasticity model. This approach allows for comprehensive optimization of both the arrangement and structure of the link mechanism components. By utilizing a continuum model that incorporates micropolar elasticity, we can specify bending stiffness independently from tensile stiffness, resulting in deformation characteristics that approximate a link mechanism. The optimization problem of designing link mechanisms for multiple outputs is reformulated as a boundary value problem within this model framework. The design goal is to synthesize a link mechanism that not only follows a desired path but also possesses the required degrees of freedom. To achieve this, the objective function is defined by the displacement error under external force and the strain energy in the links. The multi-material micropolar elasticity model is then optimized through a gradient-based optimization method, focusing on this objective function. The effectiveness and applicability of our methodology are demonstrated through several numerical case studies.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-024-03903-x</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Boundary value problems ; Continuum modeling ; Deformation effects ; Deformation mechanisms ; Design optimization ; Elasticity ; Error analysis ; Optimization ; Stiffness ; Strain energy ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2024-11, Vol.67 (11), p.190, Article 190</ispartof><rights>Copyright Springer Nature B.V. Nov 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-89442946e092719531aa584f47f0e3549805396c883c918bb241b45cb07cd1903</cites><orcidid>0000-0002-5349-6690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sayo, Yurika</creatorcontrib><creatorcontrib>Yamada, Takayuki</creatorcontrib><title>Topology optimization of link mechanisms for comprehensive synthesis of component arrangement and structure using micropolar elasticity model</title><title>Structural and multidisciplinary optimization</title><description>This paper proposes a method for topology optimization of link mechanisms with multiple outputs, using a multi-material micropolar elasticity model. This approach allows for comprehensive optimization of both the arrangement and structure of the link mechanism components. By utilizing a continuum model that incorporates micropolar elasticity, we can specify bending stiffness independently from tensile stiffness, resulting in deformation characteristics that approximate a link mechanism. The optimization problem of designing link mechanisms for multiple outputs is reformulated as a boundary value problem within this model framework. The design goal is to synthesize a link mechanism that not only follows a desired path but also possesses the required degrees of freedom. To achieve this, the objective function is defined by the displacement error under external force and the strain energy in the links. The multi-material micropolar elasticity model is then optimized through a gradient-based optimization method, focusing on this objective function. The effectiveness and applicability of our methodology are demonstrated through several numerical case studies.</description><subject>Boundary value problems</subject><subject>Continuum modeling</subject><subject>Deformation effects</subject><subject>Deformation mechanisms</subject><subject>Design optimization</subject><subject>Elasticity</subject><subject>Error analysis</subject><subject>Optimization</subject><subject>Stiffness</subject><subject>Strain energy</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKd_wKuA19WTNm2TSxl-wcCbCd6FNEu3zDapSSqr_8H_bLuJV-eF83Dew4PQNYFbAlDeBQCSswRSmkDGIUv2J2hGCpInhDJ2-p_L93N0EcIOABhQPkM_K9e5xm0G7LpoWvMto3EWuxo3xn7gVquttCa0AdfOY-XazuuttsF8aRwGG7c6mDDh08pZbSOW3ku70e0h2zUO0fcq9l7jPhi7wa1RfiqVHutGhmiUiQNu3Vo3l-islk3QV39zjt4eH1aL52T5-vSyuF8mKgWICeOUppwWGnhaEp5nRMqc0ZqWNegsp5xBnvFCMZYpTlhVpZRUNFcVlGpNRj1zdHO823n32esQxc713o6VIiMp5XlBeDpS6ZEa_w3B61p03rTSD4KAmLSLo3YxahcH7WKf_QIlpHkn</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Sayo, Yurika</creator><creator>Yamada, Takayuki</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5349-6690</orcidid></search><sort><creationdate>202411</creationdate><title>Topology optimization of link mechanisms for comprehensive synthesis of component arrangement and structure using micropolar elasticity model</title><author>Sayo, Yurika ; Yamada, Takayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-89442946e092719531aa584f47f0e3549805396c883c918bb241b45cb07cd1903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary value problems</topic><topic>Continuum modeling</topic><topic>Deformation effects</topic><topic>Deformation mechanisms</topic><topic>Design optimization</topic><topic>Elasticity</topic><topic>Error analysis</topic><topic>Optimization</topic><topic>Stiffness</topic><topic>Strain energy</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayo, Yurika</creatorcontrib><creatorcontrib>Yamada, Takayuki</creatorcontrib><collection>CrossRef</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayo, Yurika</au><au>Yamada, Takayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology optimization of link mechanisms for comprehensive synthesis of component arrangement and structure using micropolar elasticity model</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><date>2024-11</date><risdate>2024</risdate><volume>67</volume><issue>11</issue><spage>190</spage><pages>190-</pages><artnum>190</artnum><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This paper proposes a method for topology optimization of link mechanisms with multiple outputs, using a multi-material micropolar elasticity model. This approach allows for comprehensive optimization of both the arrangement and structure of the link mechanism components. By utilizing a continuum model that incorporates micropolar elasticity, we can specify bending stiffness independently from tensile stiffness, resulting in deformation characteristics that approximate a link mechanism. The optimization problem of designing link mechanisms for multiple outputs is reformulated as a boundary value problem within this model framework. The design goal is to synthesize a link mechanism that not only follows a desired path but also possesses the required degrees of freedom. To achieve this, the objective function is defined by the displacement error under external force and the strain energy in the links. The multi-material micropolar elasticity model is then optimized through a gradient-based optimization method, focusing on this objective function. The effectiveness and applicability of our methodology are demonstrated through several numerical case studies.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00158-024-03903-x</doi><orcidid>https://orcid.org/0000-0002-5349-6690</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2024-11, Vol.67 (11), p.190, Article 190
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_3124956192
source SpringerLink Journals - AutoHoldings
subjects Boundary value problems
Continuum modeling
Deformation effects
Deformation mechanisms
Design optimization
Elasticity
Error analysis
Optimization
Stiffness
Strain energy
Topology optimization
title Topology optimization of link mechanisms for comprehensive synthesis of component arrangement and structure using micropolar elasticity model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20optimization%20of%20link%20mechanisms%20for%20comprehensive%20synthesis%20of%20component%20arrangement%20and%20structure%20using%20micropolar%20elasticity%20model&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Sayo,%20Yurika&rft.date=2024-11&rft.volume=67&rft.issue=11&rft.spage=190&rft.pages=190-&rft.artnum=190&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-024-03903-x&rft_dat=%3Cproquest_cross%3E3124956192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124956192&rft_id=info:pmid/&rfr_iscdi=true