Extending Strongly Ulam Stable Groups and Towards Inductivity
We show some preservation results of amenably extending strongly Ulam stable groups under mild decay assumptions, including quantitative preservation of asymptotic bounds under the assumption that the modulus of stability is H\"older continuous of exponent \(s>\frac 1 2\) at 0, utilizing som...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sharp, Mason |
description | We show some preservation results of amenably extending strongly Ulam stable groups under mild decay assumptions, including quantitative preservation of asymptotic bounds under the assumption that the modulus of stability is H\"older continuous of exponent \(s>\frac 1 2\) at 0, utilizing some simplistic integral estimates. Additionally, we show some partial results around inductive preservation of modulus bounds in infinite dimensions using these integral estimates as well as strong quantitative preservation in the finite dimensional case, implying the existence of \(\mathfrak{U}\) uniformly stable existential closures among groups with sufficiently large Lipschitz estimates of any countable group. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3124869144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124869144</sourcerecordid><originalsourceid>FETCH-proquest_journals_31248691443</originalsourceid><addsrcrecordid>eNqNirsKwjAAAIMgWLT_EHAu5NVaByepj9k6l9TEkhKTmofav7eDH-B0HHczkBBKcVYyQhYg9b5HCJFiQ_KcJmBXfYI0QpkOXoKzptMjvGr-mIy3WsKjs3HwkBsBa_vmTnh4NiLegnqpMK7A_M61l-mPS7A-VPX-lA3OPqP0oeltdGZKDcWElcUWM0b_u76KLjgb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124869144</pqid></control><display><type>article</type><title>Extending Strongly Ulam Stable Groups and Towards Inductivity</title><source>Free E- Journals</source><creator>Sharp, Mason</creator><creatorcontrib>Sharp, Mason</creatorcontrib><description>We show some preservation results of amenably extending strongly Ulam stable groups under mild decay assumptions, including quantitative preservation of asymptotic bounds under the assumption that the modulus of stability is H\"older continuous of exponent \(s>\frac 1 2\) at 0, utilizing some simplistic integral estimates. Additionally, we show some partial results around inductive preservation of modulus bounds in infinite dimensions using these integral estimates as well as strong quantitative preservation in the finite dimensional case, implying the existence of \(\mathfrak{U}\) uniformly stable existential closures among groups with sufficiently large Lipschitz estimates of any countable group.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Estimates</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Sharp, Mason</creatorcontrib><title>Extending Strongly Ulam Stable Groups and Towards Inductivity</title><title>arXiv.org</title><description>We show some preservation results of amenably extending strongly Ulam stable groups under mild decay assumptions, including quantitative preservation of asymptotic bounds under the assumption that the modulus of stability is H\"older continuous of exponent \(s>\frac 1 2\) at 0, utilizing some simplistic integral estimates. Additionally, we show some partial results around inductive preservation of modulus bounds in infinite dimensions using these integral estimates as well as strong quantitative preservation in the finite dimensional case, implying the existence of \(\mathfrak{U}\) uniformly stable existential closures among groups with sufficiently large Lipschitz estimates of any countable group.</description><subject>Estimates</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNirsKwjAAAIMgWLT_EHAu5NVaByepj9k6l9TEkhKTmofav7eDH-B0HHczkBBKcVYyQhYg9b5HCJFiQ_KcJmBXfYI0QpkOXoKzptMjvGr-mIy3WsKjs3HwkBsBa_vmTnh4NiLegnqpMK7A_M61l-mPS7A-VPX-lA3OPqP0oeltdGZKDcWElcUWM0b_u76KLjgb</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Sharp, Mason</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241104</creationdate><title>Extending Strongly Ulam Stable Groups and Towards Inductivity</title><author>Sharp, Mason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31248691443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Estimates</topic><toplevel>online_resources</toplevel><creatorcontrib>Sharp, Mason</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharp, Mason</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Extending Strongly Ulam Stable Groups and Towards Inductivity</atitle><jtitle>arXiv.org</jtitle><date>2024-11-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We show some preservation results of amenably extending strongly Ulam stable groups under mild decay assumptions, including quantitative preservation of asymptotic bounds under the assumption that the modulus of stability is H\"older continuous of exponent \(s>\frac 1 2\) at 0, utilizing some simplistic integral estimates. Additionally, we show some partial results around inductive preservation of modulus bounds in infinite dimensions using these integral estimates as well as strong quantitative preservation in the finite dimensional case, implying the existence of \(\mathfrak{U}\) uniformly stable existential closures among groups with sufficiently large Lipschitz estimates of any countable group.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3124869144 |
source | Free E- Journals |
subjects | Estimates |
title | Extending Strongly Ulam Stable Groups and Towards Inductivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Extending%20Strongly%20Ulam%20Stable%20Groups%20and%20Towards%20Inductivity&rft.jtitle=arXiv.org&rft.au=Sharp,%20Mason&rft.date=2024-11-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3124869144%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124869144&rft_id=info:pmid/&rfr_iscdi=true |