On the Complexity of Pure-State Consistency of Local Density Matrices
In this work we investigate the computational complexity of the pure consistency of local density matrices (\(\mathsf{PureCLDM}\)) and pure \(N\)-representability (\(\mathsf{Pure}\)-\(N\)-\(\mathsf{Representability}\)) problems. In these problems the input is a set of reduced density matrices and th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kamminga, Jonas Rudolph, Dorian |
description | In this work we investigate the computational complexity of the pure consistency of local density matrices (\(\mathsf{PureCLDM}\)) and pure \(N\)-representability (\(\mathsf{Pure}\)-\(N\)-\(\mathsf{Representability}\)) problems. In these problems the input is a set of reduced density matrices and the task is to determine whether there exists a global \emph{pure} state consistent with these reduced density matrices. While mixed \(\mathsf{CLDM}\), i.e. where the global state can be mixed, was proven to be \(\mathsf{QMA}\)-complete by Broadbent and Grilo [JoC 2022], almost nothing was known about the complexity of the pure version. Before our work the best upper and lower bounds were \(\mathsf{QMA}(2)\) and \(\mathsf{QMA}\). Our contribution to the understanding of these problems is twofold. Firstly, we define a pure state analogue of the complexity class \(\mathsf{QMA}^+\) of Aharanov and Regev [FOCS 2003], which we call \(\mathsf{PureSuperQMA}\). We prove that both \(\mathsf{Pure}\)-\(N\)-\(\mathsf{Representability}\) and \(\mathsf{PureCLDM}\) are complete for this new class. Along the way we supplement Broadbent and Grilo by proving hardness for 2-qubit reduced density matrices and showing that mixed \(N\)-\(\mathsf{Representability}\) is \(\mathsf{QMA}\) complete. Secondly, we improve the upper bound on \(\mathsf{PureCLDM}\). Using methods from algebraic geometry, we prove that \(\mathsf{PureSuperQMA} \subseteq \mathsf{PSPACE}\). Our methods, and the \(\mathsf{PSPACE}\) upper bound, are also valid for \(\mathsf{PureCLDM}\) with exponential or even perfect precision, hence \(\mathsf{precisePureCLDM}\) is not \(\mathsf{preciseQMA}(2) = \mathsf{NEXP}\)-complete, unless \(\mathsf{PSPACE} = \mathsf{NEXP}\). We view this as evidence for a negative answer to the longstanding open question whether \(\mathsf{PureCLDM}\) is \(\mathsf{QMA}(2)\)-complete. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3124858623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124858623</sourcerecordid><originalsourceid>FETCH-proquest_journals_31248586233</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw9c9TKMlIVXDOzy3ISa3ILKlUyE9TCCgtStUNLkksAUnkFWcWl6TmJYNlfPKTE3MUXFKBgkClvoklRZnJqcU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvbGhkYmFqYQZ0E3GqADjHOnM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124858623</pqid></control><display><type>article</type><title>On the Complexity of Pure-State Consistency of Local Density Matrices</title><source>Free E- Journals</source><creator>Kamminga, Jonas ; Rudolph, Dorian</creator><creatorcontrib>Kamminga, Jonas ; Rudolph, Dorian</creatorcontrib><description>In this work we investigate the computational complexity of the pure consistency of local density matrices (\(\mathsf{PureCLDM}\)) and pure \(N\)-representability (\(\mathsf{Pure}\)-\(N\)-\(\mathsf{Representability}\)) problems. In these problems the input is a set of reduced density matrices and the task is to determine whether there exists a global \emph{pure} state consistent with these reduced density matrices. While mixed \(\mathsf{CLDM}\), i.e. where the global state can be mixed, was proven to be \(\mathsf{QMA}\)-complete by Broadbent and Grilo [JoC 2022], almost nothing was known about the complexity of the pure version. Before our work the best upper and lower bounds were \(\mathsf{QMA}(2)\) and \(\mathsf{QMA}\). Our contribution to the understanding of these problems is twofold. Firstly, we define a pure state analogue of the complexity class \(\mathsf{QMA}^+\) of Aharanov and Regev [FOCS 2003], which we call \(\mathsf{PureSuperQMA}\). We prove that both \(\mathsf{Pure}\)-\(N\)-\(\mathsf{Representability}\) and \(\mathsf{PureCLDM}\) are complete for this new class. Along the way we supplement Broadbent and Grilo by proving hardness for 2-qubit reduced density matrices and showing that mixed \(N\)-\(\mathsf{Representability}\) is \(\mathsf{QMA}\) complete. Secondly, we improve the upper bound on \(\mathsf{PureCLDM}\). Using methods from algebraic geometry, we prove that \(\mathsf{PureSuperQMA} \subseteq \mathsf{PSPACE}\). Our methods, and the \(\mathsf{PSPACE}\) upper bound, are also valid for \(\mathsf{PureCLDM}\) with exponential or even perfect precision, hence \(\mathsf{precisePureCLDM}\) is not \(\mathsf{preciseQMA}(2) = \mathsf{NEXP}\)-complete, unless \(\mathsf{PSPACE} = \mathsf{NEXP}\). We view this as evidence for a negative answer to the longstanding open question whether \(\mathsf{PureCLDM}\) is \(\mathsf{QMA}(2)\)-complete.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Complexity ; Density ; Lower bounds ; Upper bounds</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kamminga, Jonas</creatorcontrib><creatorcontrib>Rudolph, Dorian</creatorcontrib><title>On the Complexity of Pure-State Consistency of Local Density Matrices</title><title>arXiv.org</title><description>In this work we investigate the computational complexity of the pure consistency of local density matrices (\(\mathsf{PureCLDM}\)) and pure \(N\)-representability (\(\mathsf{Pure}\)-\(N\)-\(\mathsf{Representability}\)) problems. In these problems the input is a set of reduced density matrices and the task is to determine whether there exists a global \emph{pure} state consistent with these reduced density matrices. While mixed \(\mathsf{CLDM}\), i.e. where the global state can be mixed, was proven to be \(\mathsf{QMA}\)-complete by Broadbent and Grilo [JoC 2022], almost nothing was known about the complexity of the pure version. Before our work the best upper and lower bounds were \(\mathsf{QMA}(2)\) and \(\mathsf{QMA}\). Our contribution to the understanding of these problems is twofold. Firstly, we define a pure state analogue of the complexity class \(\mathsf{QMA}^+\) of Aharanov and Regev [FOCS 2003], which we call \(\mathsf{PureSuperQMA}\). We prove that both \(\mathsf{Pure}\)-\(N\)-\(\mathsf{Representability}\) and \(\mathsf{PureCLDM}\) are complete for this new class. Along the way we supplement Broadbent and Grilo by proving hardness for 2-qubit reduced density matrices and showing that mixed \(N\)-\(\mathsf{Representability}\) is \(\mathsf{QMA}\) complete. Secondly, we improve the upper bound on \(\mathsf{PureCLDM}\). Using methods from algebraic geometry, we prove that \(\mathsf{PureSuperQMA} \subseteq \mathsf{PSPACE}\). Our methods, and the \(\mathsf{PSPACE}\) upper bound, are also valid for \(\mathsf{PureCLDM}\) with exponential or even perfect precision, hence \(\mathsf{precisePureCLDM}\) is not \(\mathsf{preciseQMA}(2) = \mathsf{NEXP}\)-complete, unless \(\mathsf{PSPACE} = \mathsf{NEXP}\). We view this as evidence for a negative answer to the longstanding open question whether \(\mathsf{PureCLDM}\) is \(\mathsf{QMA}(2)\)-complete.</description><subject>Complexity</subject><subject>Density</subject><subject>Lower bounds</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw9c9TKMlIVXDOzy3ISa3ILKlUyE9TCCgtStUNLkksAUnkFWcWl6TmJYNlfPKTE3MUXFKBgkClvoklRZnJqcU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvbGhkYmFqYQZ0E3GqADjHOnM</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Kamminga, Jonas</creator><creator>Rudolph, Dorian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241105</creationdate><title>On the Complexity of Pure-State Consistency of Local Density Matrices</title><author>Kamminga, Jonas ; Rudolph, Dorian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31248586233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complexity</topic><topic>Density</topic><topic>Lower bounds</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Kamminga, Jonas</creatorcontrib><creatorcontrib>Rudolph, Dorian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamminga, Jonas</au><au>Rudolph, Dorian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Complexity of Pure-State Consistency of Local Density Matrices</atitle><jtitle>arXiv.org</jtitle><date>2024-11-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this work we investigate the computational complexity of the pure consistency of local density matrices (\(\mathsf{PureCLDM}\)) and pure \(N\)-representability (\(\mathsf{Pure}\)-\(N\)-\(\mathsf{Representability}\)) problems. In these problems the input is a set of reduced density matrices and the task is to determine whether there exists a global \emph{pure} state consistent with these reduced density matrices. While mixed \(\mathsf{CLDM}\), i.e. where the global state can be mixed, was proven to be \(\mathsf{QMA}\)-complete by Broadbent and Grilo [JoC 2022], almost nothing was known about the complexity of the pure version. Before our work the best upper and lower bounds were \(\mathsf{QMA}(2)\) and \(\mathsf{QMA}\). Our contribution to the understanding of these problems is twofold. Firstly, we define a pure state analogue of the complexity class \(\mathsf{QMA}^+\) of Aharanov and Regev [FOCS 2003], which we call \(\mathsf{PureSuperQMA}\). We prove that both \(\mathsf{Pure}\)-\(N\)-\(\mathsf{Representability}\) and \(\mathsf{PureCLDM}\) are complete for this new class. Along the way we supplement Broadbent and Grilo by proving hardness for 2-qubit reduced density matrices and showing that mixed \(N\)-\(\mathsf{Representability}\) is \(\mathsf{QMA}\) complete. Secondly, we improve the upper bound on \(\mathsf{PureCLDM}\). Using methods from algebraic geometry, we prove that \(\mathsf{PureSuperQMA} \subseteq \mathsf{PSPACE}\). Our methods, and the \(\mathsf{PSPACE}\) upper bound, are also valid for \(\mathsf{PureCLDM}\) with exponential or even perfect precision, hence \(\mathsf{precisePureCLDM}\) is not \(\mathsf{preciseQMA}(2) = \mathsf{NEXP}\)-complete, unless \(\mathsf{PSPACE} = \mathsf{NEXP}\). We view this as evidence for a negative answer to the longstanding open question whether \(\mathsf{PureCLDM}\) is \(\mathsf{QMA}(2)\)-complete.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3124858623 |
source | Free E- Journals |
subjects | Complexity Density Lower bounds Upper bounds |
title | On the Complexity of Pure-State Consistency of Local Density Matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Complexity%20of%20Pure-State%20Consistency%20of%20Local%20Density%20Matrices&rft.jtitle=arXiv.org&rft.au=Kamminga,%20Jonas&rft.date=2024-11-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3124858623%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124858623&rft_id=info:pmid/&rfr_iscdi=true |