Braided Scalar Quantum Field Theory
We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent...
Gespeichert in:
Veröffentlicht in: | Fortschritte der Physik 2024-11, Vol.72 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Fortschritte der Physik |
container_volume | 72 |
creator | Bogdanović, Djordje Ćirić, Marija Dimitrijević Radovanović, Voja Szabo, Richard J. Trojani, Guillaume |
description | We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent tadpole contributions are eliminated by a suitable choice of central curvature for the L∞$L_\infty$‐structure, and we confirm the absence of UV/IR mixing. The calculations of higher loop and higher multiplicity correlators in homological perturbation theory are facilitated by the introduction of a novel diagrammatic calculus. We derive an algebraic version of the Schwinger–Dyson equations based on the homological perturbation lemma, and use them to prove the braided Wick theorem.
We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent tadpole contributions are eliminated by a suitable choice of central curvature for the L∞$L_\infty$‐structure, and we confirm the absence of UV/IR mixing. The calculations of higher loop and higher multiplicity correlators in homological perturbation theory are facilitated by the introduction of a novel diagrammatic calculus. We derive an algebraic version of the Schwinger–Dyson equations based on the homological perturbation lemma, and use them to prove the braided Wick theorem. |
doi_str_mv | 10.1002/prop.202400169 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3124671706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124671706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2429-a05a99c08a3b4db3a5eaab7491d1891e0f4e63a995fe55084579d59a30cbc9743</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRMFavngM9p87sR5I9arFVKLRqPS-TZIMpaRM3DZJ_75aIHj0NDM_zDvMydoswQwB-17qmnXHgEgBjfcYCVBwjoZP0nAV-p6KUQ3rJrrpuB15AjQGbPjiqCluEbznV5MKXng7Hfh8uKlsX4fbDNm64Zhcl1Z29-ZkT9r543M6fotV6-Ty_X0U5l1xHBIq0ziElkckiE6QsUZZIjQWmGi2U0sbCI6q0SkEqVaILpUlAnuU6kWLCpmOu_-Szt93R7JreHfxJI5DLOMEEYk_NRip3Tdc5W5rWVXtyg0EwpyLMqQjzW4QX9Ch8VbUd_qHN5nW9-XO_AbCuX_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124671706</pqid></control><display><type>article</type><title>Braided Scalar Quantum Field Theory</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bogdanović, Djordje ; Ćirić, Marija Dimitrijević ; Radovanović, Voja ; Szabo, Richard J. ; Trojani, Guillaume</creator><creatorcontrib>Bogdanović, Djordje ; Ćirić, Marija Dimitrijević ; Radovanović, Voja ; Szabo, Richard J. ; Trojani, Guillaume</creatorcontrib><description>We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent tadpole contributions are eliminated by a suitable choice of central curvature for the L∞$L_\infty$‐structure, and we confirm the absence of UV/IR mixing. The calculations of higher loop and higher multiplicity correlators in homological perturbation theory are facilitated by the introduction of a novel diagrammatic calculus. We derive an algebraic version of the Schwinger–Dyson equations based on the homological perturbation lemma, and use them to prove the braided Wick theorem.
We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent tadpole contributions are eliminated by a suitable choice of central curvature for the L∞$L_\infty$‐structure, and we confirm the absence of UV/IR mixing. The calculations of higher loop and higher multiplicity correlators in homological perturbation theory are facilitated by the introduction of a novel diagrammatic calculus. We derive an algebraic version of the Schwinger–Dyson equations based on the homological perturbation lemma, and use them to prove the braided Wick theorem.</description><identifier>ISSN: 0015-8208</identifier><identifier>EISSN: 1521-3978</identifier><identifier>DOI: 10.1002/prop.202400169</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>braided BV quantization ; Braiding ; Correlation ; correlation functions ; Mathematical analysis ; Perturbation theory ; Quantum theory ; scalar field theories ; Scalars ; Schwinger–Dyson equations</subject><ispartof>Fortschritte der Physik, 2024-11, Vol.72 (11), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2429-a05a99c08a3b4db3a5eaab7491d1891e0f4e63a995fe55084579d59a30cbc9743</cites><orcidid>0000-0003-0675-1836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprop.202400169$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprop.202400169$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bogdanović, Djordje</creatorcontrib><creatorcontrib>Ćirić, Marija Dimitrijević</creatorcontrib><creatorcontrib>Radovanović, Voja</creatorcontrib><creatorcontrib>Szabo, Richard J.</creatorcontrib><creatorcontrib>Trojani, Guillaume</creatorcontrib><title>Braided Scalar Quantum Field Theory</title><title>Fortschritte der Physik</title><description>We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent tadpole contributions are eliminated by a suitable choice of central curvature for the L∞$L_\infty$‐structure, and we confirm the absence of UV/IR mixing. The calculations of higher loop and higher multiplicity correlators in homological perturbation theory are facilitated by the introduction of a novel diagrammatic calculus. We derive an algebraic version of the Schwinger–Dyson equations based on the homological perturbation lemma, and use them to prove the braided Wick theorem.
We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent tadpole contributions are eliminated by a suitable choice of central curvature for the L∞$L_\infty$‐structure, and we confirm the absence of UV/IR mixing. The calculations of higher loop and higher multiplicity correlators in homological perturbation theory are facilitated by the introduction of a novel diagrammatic calculus. We derive an algebraic version of the Schwinger–Dyson equations based on the homological perturbation lemma, and use them to prove the braided Wick theorem.</description><subject>braided BV quantization</subject><subject>Braiding</subject><subject>Correlation</subject><subject>correlation functions</subject><subject>Mathematical analysis</subject><subject>Perturbation theory</subject><subject>Quantum theory</subject><subject>scalar field theories</subject><subject>Scalars</subject><subject>Schwinger–Dyson equations</subject><issn>0015-8208</issn><issn>1521-3978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRMFavngM9p87sR5I9arFVKLRqPS-TZIMpaRM3DZJ_75aIHj0NDM_zDvMydoswQwB-17qmnXHgEgBjfcYCVBwjoZP0nAV-p6KUQ3rJrrpuB15AjQGbPjiqCluEbznV5MKXng7Hfh8uKlsX4fbDNm64Zhcl1Z29-ZkT9r543M6fotV6-Ty_X0U5l1xHBIq0ziElkckiE6QsUZZIjQWmGi2U0sbCI6q0SkEqVaILpUlAnuU6kWLCpmOu_-Szt93R7JreHfxJI5DLOMEEYk_NRip3Tdc5W5rWVXtyg0EwpyLMqQjzW4QX9Ch8VbUd_qHN5nW9-XO_AbCuX_w</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Bogdanović, Djordje</creator><creator>Ćirić, Marija Dimitrijević</creator><creator>Radovanović, Voja</creator><creator>Szabo, Richard J.</creator><creator>Trojani, Guillaume</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0675-1836</orcidid></search><sort><creationdate>202411</creationdate><title>Braided Scalar Quantum Field Theory</title><author>Bogdanović, Djordje ; Ćirić, Marija Dimitrijević ; Radovanović, Voja ; Szabo, Richard J. ; Trojani, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2429-a05a99c08a3b4db3a5eaab7491d1891e0f4e63a995fe55084579d59a30cbc9743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>braided BV quantization</topic><topic>Braiding</topic><topic>Correlation</topic><topic>correlation functions</topic><topic>Mathematical analysis</topic><topic>Perturbation theory</topic><topic>Quantum theory</topic><topic>scalar field theories</topic><topic>Scalars</topic><topic>Schwinger–Dyson equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogdanović, Djordje</creatorcontrib><creatorcontrib>Ćirić, Marija Dimitrijević</creatorcontrib><creatorcontrib>Radovanović, Voja</creatorcontrib><creatorcontrib>Szabo, Richard J.</creatorcontrib><creatorcontrib>Trojani, Guillaume</creatorcontrib><collection>CrossRef</collection><jtitle>Fortschritte der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogdanović, Djordje</au><au>Ćirić, Marija Dimitrijević</au><au>Radovanović, Voja</au><au>Szabo, Richard J.</au><au>Trojani, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Braided Scalar Quantum Field Theory</atitle><jtitle>Fortschritte der Physik</jtitle><date>2024-11</date><risdate>2024</risdate><volume>72</volume><issue>11</issue><epage>n/a</epage><issn>0015-8208</issn><eissn>1521-3978</eissn><abstract>We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent tadpole contributions are eliminated by a suitable choice of central curvature for the L∞$L_\infty$‐structure, and we confirm the absence of UV/IR mixing. The calculations of higher loop and higher multiplicity correlators in homological perturbation theory are facilitated by the introduction of a novel diagrammatic calculus. We derive an algebraic version of the Schwinger–Dyson equations based on the homological perturbation lemma, and use them to prove the braided Wick theorem.
We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent tadpole contributions are eliminated by a suitable choice of central curvature for the L∞$L_\infty$‐structure, and we confirm the absence of UV/IR mixing. The calculations of higher loop and higher multiplicity correlators in homological perturbation theory are facilitated by the introduction of a novel diagrammatic calculus. We derive an algebraic version of the Schwinger–Dyson equations based on the homological perturbation lemma, and use them to prove the braided Wick theorem.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/prop.202400169</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-0675-1836</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-8208 |
ispartof | Fortschritte der Physik, 2024-11, Vol.72 (11), p.n/a |
issn | 0015-8208 1521-3978 |
language | eng |
recordid | cdi_proquest_journals_3124671706 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | braided BV quantization Braiding Correlation correlation functions Mathematical analysis Perturbation theory Quantum theory scalar field theories Scalars Schwinger–Dyson equations |
title | Braided Scalar Quantum Field Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Braided%20Scalar%20Quantum%20Field%20Theory&rft.jtitle=Fortschritte%20der%20Physik&rft.au=Bogdanovi%C4%87,%20Djordje&rft.date=2024-11&rft.volume=72&rft.issue=11&rft.epage=n/a&rft.issn=0015-8208&rft.eissn=1521-3978&rft_id=info:doi/10.1002/prop.202400169&rft_dat=%3Cproquest_cross%3E3124671706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124671706&rft_id=info:pmid/&rfr_iscdi=true |