Braided Scalar Quantum Field Theory

We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fortschritte der Physik 2024-11, Vol.72 (11), p.n/a
Hauptverfasser: Bogdanović, Djordje, Ćirić, Marija Dimitrijević, Radovanović, Voja, Szabo, Richard J., Trojani, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Fortschritte der Physik
container_volume 72
creator Bogdanović, Djordje
Ćirić, Marija Dimitrijević
Radovanović, Voja
Szabo, Richard J.
Trojani, Guillaume
description We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent tadpole contributions are eliminated by a suitable choice of central curvature for the L∞$L_\infty$‐structure, and we confirm the absence of UV/IR mixing. The calculations of higher loop and higher multiplicity correlators in homological perturbation theory are facilitated by the introduction of a novel diagrammatic calculus. We derive an algebraic version of the Schwinger–Dyson equations based on the homological perturbation lemma, and use them to prove the braided Wick theorem. We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent tadpole contributions are eliminated by a suitable choice of central curvature for the L∞$L_\infty$‐structure, and we confirm the absence of UV/IR mixing. The calculations of higher loop and higher multiplicity correlators in homological perturbation theory are facilitated by the introduction of a novel diagrammatic calculus. We derive an algebraic version of the Schwinger–Dyson equations based on the homological perturbation lemma, and use them to prove the braided Wick theorem.
doi_str_mv 10.1002/prop.202400169
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3124671706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124671706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2429-a05a99c08a3b4db3a5eaab7491d1891e0f4e63a995fe55084579d59a30cbc9743</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRMFavngM9p87sR5I9arFVKLRqPS-TZIMpaRM3DZJ_75aIHj0NDM_zDvMydoswQwB-17qmnXHgEgBjfcYCVBwjoZP0nAV-p6KUQ3rJrrpuB15AjQGbPjiqCluEbznV5MKXng7Hfh8uKlsX4fbDNm64Zhcl1Z29-ZkT9r543M6fotV6-Ty_X0U5l1xHBIq0ziElkckiE6QsUZZIjQWmGi2U0sbCI6q0SkEqVaILpUlAnuU6kWLCpmOu_-Szt93R7JreHfxJI5DLOMEEYk_NRip3Tdc5W5rWVXtyg0EwpyLMqQjzW4QX9Ch8VbUd_qHN5nW9-XO_AbCuX_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124671706</pqid></control><display><type>article</type><title>Braided Scalar Quantum Field Theory</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bogdanović, Djordje ; Ćirić, Marija Dimitrijević ; Radovanović, Voja ; Szabo, Richard J. ; Trojani, Guillaume</creator><creatorcontrib>Bogdanović, Djordje ; Ćirić, Marija Dimitrijević ; Radovanović, Voja ; Szabo, Richard J. ; Trojani, Guillaume</creatorcontrib><description>We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent tadpole contributions are eliminated by a suitable choice of central curvature for the L∞$L_\infty$‐structure, and we confirm the absence of UV/IR mixing. The calculations of higher loop and higher multiplicity correlators in homological perturbation theory are facilitated by the introduction of a novel diagrammatic calculus. We derive an algebraic version of the Schwinger–Dyson equations based on the homological perturbation lemma, and use them to prove the braided Wick theorem. We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent tadpole contributions are eliminated by a suitable choice of central curvature for the L∞$L_\infty$‐structure, and we confirm the absence of UV/IR mixing. The calculations of higher loop and higher multiplicity correlators in homological perturbation theory are facilitated by the introduction of a novel diagrammatic calculus. We derive an algebraic version of the Schwinger–Dyson equations based on the homological perturbation lemma, and use them to prove the braided Wick theorem.</description><identifier>ISSN: 0015-8208</identifier><identifier>EISSN: 1521-3978</identifier><identifier>DOI: 10.1002/prop.202400169</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>braided BV quantization ; Braiding ; Correlation ; correlation functions ; Mathematical analysis ; Perturbation theory ; Quantum theory ; scalar field theories ; Scalars ; Schwinger–Dyson equations</subject><ispartof>Fortschritte der Physik, 2024-11, Vol.72 (11), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2429-a05a99c08a3b4db3a5eaab7491d1891e0f4e63a995fe55084579d59a30cbc9743</cites><orcidid>0000-0003-0675-1836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprop.202400169$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprop.202400169$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bogdanović, Djordje</creatorcontrib><creatorcontrib>Ćirić, Marija Dimitrijević</creatorcontrib><creatorcontrib>Radovanović, Voja</creatorcontrib><creatorcontrib>Szabo, Richard J.</creatorcontrib><creatorcontrib>Trojani, Guillaume</creatorcontrib><title>Braided Scalar Quantum Field Theory</title><title>Fortschritte der Physik</title><description>We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent tadpole contributions are eliminated by a suitable choice of central curvature for the L∞$L_\infty$‐structure, and we confirm the absence of UV/IR mixing. The calculations of higher loop and higher multiplicity correlators in homological perturbation theory are facilitated by the introduction of a novel diagrammatic calculus. We derive an algebraic version of the Schwinger–Dyson equations based on the homological perturbation lemma, and use them to prove the braided Wick theorem. We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent tadpole contributions are eliminated by a suitable choice of central curvature for the L∞$L_\infty$‐structure, and we confirm the absence of UV/IR mixing. The calculations of higher loop and higher multiplicity correlators in homological perturbation theory are facilitated by the introduction of a novel diagrammatic calculus. We derive an algebraic version of the Schwinger–Dyson equations based on the homological perturbation lemma, and use them to prove the braided Wick theorem.</description><subject>braided BV quantization</subject><subject>Braiding</subject><subject>Correlation</subject><subject>correlation functions</subject><subject>Mathematical analysis</subject><subject>Perturbation theory</subject><subject>Quantum theory</subject><subject>scalar field theories</subject><subject>Scalars</subject><subject>Schwinger–Dyson equations</subject><issn>0015-8208</issn><issn>1521-3978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRMFavngM9p87sR5I9arFVKLRqPS-TZIMpaRM3DZJ_75aIHj0NDM_zDvMydoswQwB-17qmnXHgEgBjfcYCVBwjoZP0nAV-p6KUQ3rJrrpuB15AjQGbPjiqCluEbznV5MKXng7Hfh8uKlsX4fbDNm64Zhcl1Z29-ZkT9r543M6fotV6-Ty_X0U5l1xHBIq0ziElkckiE6QsUZZIjQWmGi2U0sbCI6q0SkEqVaILpUlAnuU6kWLCpmOu_-Szt93R7JreHfxJI5DLOMEEYk_NRip3Tdc5W5rWVXtyg0EwpyLMqQjzW4QX9Ch8VbUd_qHN5nW9-XO_AbCuX_w</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Bogdanović, Djordje</creator><creator>Ćirić, Marija Dimitrijević</creator><creator>Radovanović, Voja</creator><creator>Szabo, Richard J.</creator><creator>Trojani, Guillaume</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0675-1836</orcidid></search><sort><creationdate>202411</creationdate><title>Braided Scalar Quantum Field Theory</title><author>Bogdanović, Djordje ; Ćirić, Marija Dimitrijević ; Radovanović, Voja ; Szabo, Richard J. ; Trojani, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2429-a05a99c08a3b4db3a5eaab7491d1891e0f4e63a995fe55084579d59a30cbc9743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>braided BV quantization</topic><topic>Braiding</topic><topic>Correlation</topic><topic>correlation functions</topic><topic>Mathematical analysis</topic><topic>Perturbation theory</topic><topic>Quantum theory</topic><topic>scalar field theories</topic><topic>Scalars</topic><topic>Schwinger–Dyson equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogdanović, Djordje</creatorcontrib><creatorcontrib>Ćirić, Marija Dimitrijević</creatorcontrib><creatorcontrib>Radovanović, Voja</creatorcontrib><creatorcontrib>Szabo, Richard J.</creatorcontrib><creatorcontrib>Trojani, Guillaume</creatorcontrib><collection>CrossRef</collection><jtitle>Fortschritte der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogdanović, Djordje</au><au>Ćirić, Marija Dimitrijević</au><au>Radovanović, Voja</au><au>Szabo, Richard J.</au><au>Trojani, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Braided Scalar Quantum Field Theory</atitle><jtitle>Fortschritte der Physik</jtitle><date>2024-11</date><risdate>2024</risdate><volume>72</volume><issue>11</issue><epage>n/a</epage><issn>0015-8208</issn><eissn>1521-3978</eissn><abstract>We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent tadpole contributions are eliminated by a suitable choice of central curvature for the L∞$L_\infty$‐structure, and we confirm the absence of UV/IR mixing. The calculations of higher loop and higher multiplicity correlators in homological perturbation theory are facilitated by the introduction of a novel diagrammatic calculus. We derive an algebraic version of the Schwinger–Dyson equations based on the homological perturbation lemma, and use them to prove the braided Wick theorem. We formulate scalar field theories in a curved braided L∞$L_\infty$‐algebra formalism and analyse their correlation functions using Batalin–Vilkovisky quantization. We perform detailed calculations in cubic braided scalar field theory up to two‐loop order and three‐point multiplicity. The divergent tadpole contributions are eliminated by a suitable choice of central curvature for the L∞$L_\infty$‐structure, and we confirm the absence of UV/IR mixing. The calculations of higher loop and higher multiplicity correlators in homological perturbation theory are facilitated by the introduction of a novel diagrammatic calculus. We derive an algebraic version of the Schwinger–Dyson equations based on the homological perturbation lemma, and use them to prove the braided Wick theorem.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/prop.202400169</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-0675-1836</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0015-8208
ispartof Fortschritte der Physik, 2024-11, Vol.72 (11), p.n/a
issn 0015-8208
1521-3978
language eng
recordid cdi_proquest_journals_3124671706
source Wiley Online Library Journals Frontfile Complete
subjects braided BV quantization
Braiding
Correlation
correlation functions
Mathematical analysis
Perturbation theory
Quantum theory
scalar field theories
Scalars
Schwinger–Dyson equations
title Braided Scalar Quantum Field Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Braided%20Scalar%20Quantum%20Field%20Theory&rft.jtitle=Fortschritte%20der%20Physik&rft.au=Bogdanovi%C4%87,%20Djordje&rft.date=2024-11&rft.volume=72&rft.issue=11&rft.epage=n/a&rft.issn=0015-8208&rft.eissn=1521-3978&rft_id=info:doi/10.1002/prop.202400169&rft_dat=%3Cproquest_cross%3E3124671706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124671706&rft_id=info:pmid/&rfr_iscdi=true