Microcavity assisted graphene pressure sensor for single-vessel local blood pressure monitoring

Dynamic monitoring of blood pressure (BP) is beneficial to obtain comprehensive cardiovascular information of patients throughout the day. However, the clinical BP measurement method relies on wearing a bulky cuff, which limits the long-term monitoring and control of BP. In this work, a microcavity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2024-11, Vol.17 (11), p.10058-10068
Hauptverfasser: Luo, Jinan, Wu, Jingzhi, Zheng, Xiaopeng, Xiong, Haoran, Lin, Lin, Liu, Chang, Liu, Haidong, Tang, Hao, Liu, Houfang, Han, Fei, Liu, Zhiyuan, Deng, Zhikang, Liu, Chuting, Cui, Tianrui, Li, Bo, Ren, Tian-Ling, Zhou, Jianhua, Qiao, Yancong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10068
container_issue 11
container_start_page 10058
container_title Nano research
container_volume 17
creator Luo, Jinan
Wu, Jingzhi
Zheng, Xiaopeng
Xiong, Haoran
Lin, Lin
Liu, Chang
Liu, Haidong
Tang, Hao
Liu, Houfang
Han, Fei
Liu, Zhiyuan
Deng, Zhikang
Liu, Chuting
Cui, Tianrui
Li, Bo
Ren, Tian-Ling
Zhou, Jianhua
Qiao, Yancong
description Dynamic monitoring of blood pressure (BP) is beneficial to obtain comprehensive cardiovascular information of patients throughout the day. However, the clinical BP measurement method relies on wearing a bulky cuff, which limits the long-term monitoring and control of BP. In this work, a microcavity assisted graphene pressure sensor (MAGPS) for single-vessel local BP monitoring is designed to replace the cuff. The microcavity structure increases the working range of the sensor by gas pressure buffering. Therefore, the MAGPS achieves a wide linear response of 0–1050 kPa and sensitivity of 15.4 kPa −1 . The large working range and the microcavity structure enable the sensor to fully meet the requirements of BP detection at the radial artery. A database of 228 BP data (60-s data fragment detected by MAGPS) and 11,804 pulse waves from 9 healthy subjects and 5 hypertensive subjects is built. Finally, the BP was detected and analyzed automatically by combining MAGPS and a two-stage convolutional neural network algorithm. For the BP detection method at local radial artery, the first stage algorithm first determines whether the subject has hypertension by the pulse wave. Then, the second stage algorithm can diagnose systolic and diastolic BP with the accuracy of 93.5% and 97.8% within a 10 mmHg error, respectively. This work demonstrates a new BP detection method based on single vessel, which greatly promotes the efficiency of BP detection.
doi_str_mv 10.1007/s12274-024-6969-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3124280633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124280633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-1f1ae7d71a8f774f78cf46bf8355e3e57e5ff8261c163b744622d0e10c47a7533</originalsourceid><addsrcrecordid>eNp1UMFKxDAQDaLguvoB3gqeo0maJulRFnWFFS96Dtl2snbpNjXTXdi_N6XKnhwYZmDee8N7hNxyds8Z0w_IhdCSMiGpKlVJ9RmZ8bI0lKU6_9u5kJfkCnHLmBJcmhmxb00VQ-UOzXDMHGKDA9TZJrr-CzrI-giI-wgZQochZj41Nt2mBXpIF2izNpHbbN2GUJ_Qu9A1Q4gJeE0uvGsRbn7nnHw-P30slnT1_vK6eFzRipdmoNxzB7rW3BmvtfTaVF6qtTd5UUAOhYbCeyMUr7jK11pKJUTNgLNKaqeLPJ-Tu0m3j-F7DzjYbdjHLr20eXItDFP5iOITKnlGjOBtH5udi0fLmR1ztFOONuVoxxytThwxcbAfDUE8Kf9P-gGBIXcr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124280633</pqid></control><display><type>article</type><title>Microcavity assisted graphene pressure sensor for single-vessel local blood pressure monitoring</title><source>SpringerLink Journals - AutoHoldings</source><creator>Luo, Jinan ; Wu, Jingzhi ; Zheng, Xiaopeng ; Xiong, Haoran ; Lin, Lin ; Liu, Chang ; Liu, Haidong ; Tang, Hao ; Liu, Houfang ; Han, Fei ; Liu, Zhiyuan ; Deng, Zhikang ; Liu, Chuting ; Cui, Tianrui ; Li, Bo ; Ren, Tian-Ling ; Zhou, Jianhua ; Qiao, Yancong</creator><creatorcontrib>Luo, Jinan ; Wu, Jingzhi ; Zheng, Xiaopeng ; Xiong, Haoran ; Lin, Lin ; Liu, Chang ; Liu, Haidong ; Tang, Hao ; Liu, Houfang ; Han, Fei ; Liu, Zhiyuan ; Deng, Zhikang ; Liu, Chuting ; Cui, Tianrui ; Li, Bo ; Ren, Tian-Ling ; Zhou, Jianhua ; Qiao, Yancong</creatorcontrib><description>Dynamic monitoring of blood pressure (BP) is beneficial to obtain comprehensive cardiovascular information of patients throughout the day. However, the clinical BP measurement method relies on wearing a bulky cuff, which limits the long-term monitoring and control of BP. In this work, a microcavity assisted graphene pressure sensor (MAGPS) for single-vessel local BP monitoring is designed to replace the cuff. The microcavity structure increases the working range of the sensor by gas pressure buffering. Therefore, the MAGPS achieves a wide linear response of 0–1050 kPa and sensitivity of 15.4 kPa −1 . The large working range and the microcavity structure enable the sensor to fully meet the requirements of BP detection at the radial artery. A database of 228 BP data (60-s data fragment detected by MAGPS) and 11,804 pulse waves from 9 healthy subjects and 5 hypertensive subjects is built. Finally, the BP was detected and analyzed automatically by combining MAGPS and a two-stage convolutional neural network algorithm. For the BP detection method at local radial artery, the first stage algorithm first determines whether the subject has hypertension by the pulse wave. Then, the second stage algorithm can diagnose systolic and diastolic BP with the accuracy of 93.5% and 97.8% within a 10 mmHg error, respectively. This work demonstrates a new BP detection method based on single vessel, which greatly promotes the efficiency of BP detection.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-024-6969-7</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Algorithms ; Artificial neural networks ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Blood pressure ; Blood vessels ; Chemistry and Materials Science ; Condensed Matter Physics ; Error detection ; Gas pressure ; Graphene ; Hypertension ; Materials Science ; Measurement methods ; Monitoring ; Nanotechnology ; Neural networks ; Pressure sensors ; Research Article ; Sensors ; Telemedicine</subject><ispartof>Nano research, 2024-11, Vol.17 (11), p.10058-10068</ispartof><rights>Tsinghua University Press 2024</rights><rights>Copyright Springer Nature B.V. Nov 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-1f1ae7d71a8f774f78cf46bf8355e3e57e5ff8261c163b744622d0e10c47a7533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-024-6969-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-024-6969-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Luo, Jinan</creatorcontrib><creatorcontrib>Wu, Jingzhi</creatorcontrib><creatorcontrib>Zheng, Xiaopeng</creatorcontrib><creatorcontrib>Xiong, Haoran</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Liu, Haidong</creatorcontrib><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Liu, Houfang</creatorcontrib><creatorcontrib>Han, Fei</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Deng, Zhikang</creatorcontrib><creatorcontrib>Liu, Chuting</creatorcontrib><creatorcontrib>Cui, Tianrui</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Ren, Tian-Ling</creatorcontrib><creatorcontrib>Zhou, Jianhua</creatorcontrib><creatorcontrib>Qiao, Yancong</creatorcontrib><title>Microcavity assisted graphene pressure sensor for single-vessel local blood pressure monitoring</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Dynamic monitoring of blood pressure (BP) is beneficial to obtain comprehensive cardiovascular information of patients throughout the day. However, the clinical BP measurement method relies on wearing a bulky cuff, which limits the long-term monitoring and control of BP. In this work, a microcavity assisted graphene pressure sensor (MAGPS) for single-vessel local BP monitoring is designed to replace the cuff. The microcavity structure increases the working range of the sensor by gas pressure buffering. Therefore, the MAGPS achieves a wide linear response of 0–1050 kPa and sensitivity of 15.4 kPa −1 . The large working range and the microcavity structure enable the sensor to fully meet the requirements of BP detection at the radial artery. A database of 228 BP data (60-s data fragment detected by MAGPS) and 11,804 pulse waves from 9 healthy subjects and 5 hypertensive subjects is built. Finally, the BP was detected and analyzed automatically by combining MAGPS and a two-stage convolutional neural network algorithm. For the BP detection method at local radial artery, the first stage algorithm first determines whether the subject has hypertension by the pulse wave. Then, the second stage algorithm can diagnose systolic and diastolic BP with the accuracy of 93.5% and 97.8% within a 10 mmHg error, respectively. This work demonstrates a new BP detection method based on single vessel, which greatly promotes the efficiency of BP detection.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Blood pressure</subject><subject>Blood vessels</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Error detection</subject><subject>Gas pressure</subject><subject>Graphene</subject><subject>Hypertension</subject><subject>Materials Science</subject><subject>Measurement methods</subject><subject>Monitoring</subject><subject>Nanotechnology</subject><subject>Neural networks</subject><subject>Pressure sensors</subject><subject>Research Article</subject><subject>Sensors</subject><subject>Telemedicine</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKxDAQDaLguvoB3gqeo0maJulRFnWFFS96Dtl2snbpNjXTXdi_N6XKnhwYZmDee8N7hNxyds8Z0w_IhdCSMiGpKlVJ9RmZ8bI0lKU6_9u5kJfkCnHLmBJcmhmxb00VQ-UOzXDMHGKDA9TZJrr-CzrI-giI-wgZQochZj41Nt2mBXpIF2izNpHbbN2GUJ_Qu9A1Q4gJeE0uvGsRbn7nnHw-P30slnT1_vK6eFzRipdmoNxzB7rW3BmvtfTaVF6qtTd5UUAOhYbCeyMUr7jK11pKJUTNgLNKaqeLPJ-Tu0m3j-F7DzjYbdjHLr20eXItDFP5iOITKnlGjOBtH5udi0fLmR1ztFOONuVoxxytThwxcbAfDUE8Kf9P-gGBIXcr</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Luo, Jinan</creator><creator>Wu, Jingzhi</creator><creator>Zheng, Xiaopeng</creator><creator>Xiong, Haoran</creator><creator>Lin, Lin</creator><creator>Liu, Chang</creator><creator>Liu, Haidong</creator><creator>Tang, Hao</creator><creator>Liu, Houfang</creator><creator>Han, Fei</creator><creator>Liu, Zhiyuan</creator><creator>Deng, Zhikang</creator><creator>Liu, Chuting</creator><creator>Cui, Tianrui</creator><creator>Li, Bo</creator><creator>Ren, Tian-Ling</creator><creator>Zhou, Jianhua</creator><creator>Qiao, Yancong</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20241101</creationdate><title>Microcavity assisted graphene pressure sensor for single-vessel local blood pressure monitoring</title><author>Luo, Jinan ; Wu, Jingzhi ; Zheng, Xiaopeng ; Xiong, Haoran ; Lin, Lin ; Liu, Chang ; Liu, Haidong ; Tang, Hao ; Liu, Houfang ; Han, Fei ; Liu, Zhiyuan ; Deng, Zhikang ; Liu, Chuting ; Cui, Tianrui ; Li, Bo ; Ren, Tian-Ling ; Zhou, Jianhua ; Qiao, Yancong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-1f1ae7d71a8f774f78cf46bf8355e3e57e5ff8261c163b744622d0e10c47a7533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Blood pressure</topic><topic>Blood vessels</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Error detection</topic><topic>Gas pressure</topic><topic>Graphene</topic><topic>Hypertension</topic><topic>Materials Science</topic><topic>Measurement methods</topic><topic>Monitoring</topic><topic>Nanotechnology</topic><topic>Neural networks</topic><topic>Pressure sensors</topic><topic>Research Article</topic><topic>Sensors</topic><topic>Telemedicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jinan</creatorcontrib><creatorcontrib>Wu, Jingzhi</creatorcontrib><creatorcontrib>Zheng, Xiaopeng</creatorcontrib><creatorcontrib>Xiong, Haoran</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Liu, Haidong</creatorcontrib><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Liu, Houfang</creatorcontrib><creatorcontrib>Han, Fei</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Deng, Zhikang</creatorcontrib><creatorcontrib>Liu, Chuting</creatorcontrib><creatorcontrib>Cui, Tianrui</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Ren, Tian-Ling</creatorcontrib><creatorcontrib>Zhou, Jianhua</creatorcontrib><creatorcontrib>Qiao, Yancong</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Jinan</au><au>Wu, Jingzhi</au><au>Zheng, Xiaopeng</au><au>Xiong, Haoran</au><au>Lin, Lin</au><au>Liu, Chang</au><au>Liu, Haidong</au><au>Tang, Hao</au><au>Liu, Houfang</au><au>Han, Fei</au><au>Liu, Zhiyuan</au><au>Deng, Zhikang</au><au>Liu, Chuting</au><au>Cui, Tianrui</au><au>Li, Bo</au><au>Ren, Tian-Ling</au><au>Zhou, Jianhua</au><au>Qiao, Yancong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microcavity assisted graphene pressure sensor for single-vessel local blood pressure monitoring</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>17</volume><issue>11</issue><spage>10058</spage><epage>10068</epage><pages>10058-10068</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Dynamic monitoring of blood pressure (BP) is beneficial to obtain comprehensive cardiovascular information of patients throughout the day. However, the clinical BP measurement method relies on wearing a bulky cuff, which limits the long-term monitoring and control of BP. In this work, a microcavity assisted graphene pressure sensor (MAGPS) for single-vessel local BP monitoring is designed to replace the cuff. The microcavity structure increases the working range of the sensor by gas pressure buffering. Therefore, the MAGPS achieves a wide linear response of 0–1050 kPa and sensitivity of 15.4 kPa −1 . The large working range and the microcavity structure enable the sensor to fully meet the requirements of BP detection at the radial artery. A database of 228 BP data (60-s data fragment detected by MAGPS) and 11,804 pulse waves from 9 healthy subjects and 5 hypertensive subjects is built. Finally, the BP was detected and analyzed automatically by combining MAGPS and a two-stage convolutional neural network algorithm. For the BP detection method at local radial artery, the first stage algorithm first determines whether the subject has hypertension by the pulse wave. Then, the second stage algorithm can diagnose systolic and diastolic BP with the accuracy of 93.5% and 97.8% within a 10 mmHg error, respectively. This work demonstrates a new BP detection method based on single vessel, which greatly promotes the efficiency of BP detection.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-024-6969-7</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2024-11, Vol.17 (11), p.10058-10068
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_3124280633
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial neural networks
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Blood pressure
Blood vessels
Chemistry and Materials Science
Condensed Matter Physics
Error detection
Gas pressure
Graphene
Hypertension
Materials Science
Measurement methods
Monitoring
Nanotechnology
Neural networks
Pressure sensors
Research Article
Sensors
Telemedicine
title Microcavity assisted graphene pressure sensor for single-vessel local blood pressure monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microcavity%20assisted%20graphene%20pressure%20sensor%20for%20single-vessel%20local%20blood%20pressure%20monitoring&rft.jtitle=Nano%20research&rft.au=Luo,%20Jinan&rft.date=2024-11-01&rft.volume=17&rft.issue=11&rft.spage=10058&rft.epage=10068&rft.pages=10058-10068&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-024-6969-7&rft_dat=%3Cproquest_cross%3E3124280633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124280633&rft_id=info:pmid/&rfr_iscdi=true