Microcavity assisted graphene pressure sensor for single-vessel local blood pressure monitoring
Dynamic monitoring of blood pressure (BP) is beneficial to obtain comprehensive cardiovascular information of patients throughout the day. However, the clinical BP measurement method relies on wearing a bulky cuff, which limits the long-term monitoring and control of BP. In this work, a microcavity...
Gespeichert in:
Veröffentlicht in: | Nano research 2024-11, Vol.17 (11), p.10058-10068 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10068 |
---|---|
container_issue | 11 |
container_start_page | 10058 |
container_title | Nano research |
container_volume | 17 |
creator | Luo, Jinan Wu, Jingzhi Zheng, Xiaopeng Xiong, Haoran Lin, Lin Liu, Chang Liu, Haidong Tang, Hao Liu, Houfang Han, Fei Liu, Zhiyuan Deng, Zhikang Liu, Chuting Cui, Tianrui Li, Bo Ren, Tian-Ling Zhou, Jianhua Qiao, Yancong |
description | Dynamic monitoring of blood pressure (BP) is beneficial to obtain comprehensive cardiovascular information of patients throughout the day. However, the clinical BP measurement method relies on wearing a bulky cuff, which limits the long-term monitoring and control of BP. In this work, a microcavity assisted graphene pressure sensor (MAGPS) for single-vessel local BP monitoring is designed to replace the cuff. The microcavity structure increases the working range of the sensor by gas pressure buffering. Therefore, the MAGPS achieves a wide linear response of 0–1050 kPa and sensitivity of 15.4 kPa
−1
. The large working range and the microcavity structure enable the sensor to fully meet the requirements of BP detection at the radial artery. A database of 228 BP data (60-s data fragment detected by MAGPS) and 11,804 pulse waves from 9 healthy subjects and 5 hypertensive subjects is built. Finally, the BP was detected and analyzed automatically by combining MAGPS and a two-stage convolutional neural network algorithm. For the BP detection method at local radial artery, the first stage algorithm first determines whether the subject has hypertension by the pulse wave. Then, the second stage algorithm can diagnose systolic and diastolic BP with the accuracy of 93.5% and 97.8% within a 10 mmHg error, respectively. This work demonstrates a new BP detection method based on single vessel, which greatly promotes the efficiency of BP detection. |
doi_str_mv | 10.1007/s12274-024-6969-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3124280633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124280633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-1f1ae7d71a8f774f78cf46bf8355e3e57e5ff8261c163b744622d0e10c47a7533</originalsourceid><addsrcrecordid>eNp1UMFKxDAQDaLguvoB3gqeo0maJulRFnWFFS96Dtl2snbpNjXTXdi_N6XKnhwYZmDee8N7hNxyds8Z0w_IhdCSMiGpKlVJ9RmZ8bI0lKU6_9u5kJfkCnHLmBJcmhmxb00VQ-UOzXDMHGKDA9TZJrr-CzrI-giI-wgZQochZj41Nt2mBXpIF2izNpHbbN2GUJ_Qu9A1Q4gJeE0uvGsRbn7nnHw-P30slnT1_vK6eFzRipdmoNxzB7rW3BmvtfTaVF6qtTd5UUAOhYbCeyMUr7jK11pKJUTNgLNKaqeLPJ-Tu0m3j-F7DzjYbdjHLr20eXItDFP5iOITKnlGjOBtH5udi0fLmR1ztFOONuVoxxytThwxcbAfDUE8Kf9P-gGBIXcr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124280633</pqid></control><display><type>article</type><title>Microcavity assisted graphene pressure sensor for single-vessel local blood pressure monitoring</title><source>SpringerLink Journals - AutoHoldings</source><creator>Luo, Jinan ; Wu, Jingzhi ; Zheng, Xiaopeng ; Xiong, Haoran ; Lin, Lin ; Liu, Chang ; Liu, Haidong ; Tang, Hao ; Liu, Houfang ; Han, Fei ; Liu, Zhiyuan ; Deng, Zhikang ; Liu, Chuting ; Cui, Tianrui ; Li, Bo ; Ren, Tian-Ling ; Zhou, Jianhua ; Qiao, Yancong</creator><creatorcontrib>Luo, Jinan ; Wu, Jingzhi ; Zheng, Xiaopeng ; Xiong, Haoran ; Lin, Lin ; Liu, Chang ; Liu, Haidong ; Tang, Hao ; Liu, Houfang ; Han, Fei ; Liu, Zhiyuan ; Deng, Zhikang ; Liu, Chuting ; Cui, Tianrui ; Li, Bo ; Ren, Tian-Ling ; Zhou, Jianhua ; Qiao, Yancong</creatorcontrib><description>Dynamic monitoring of blood pressure (BP) is beneficial to obtain comprehensive cardiovascular information of patients throughout the day. However, the clinical BP measurement method relies on wearing a bulky cuff, which limits the long-term monitoring and control of BP. In this work, a microcavity assisted graphene pressure sensor (MAGPS) for single-vessel local BP monitoring is designed to replace the cuff. The microcavity structure increases the working range of the sensor by gas pressure buffering. Therefore, the MAGPS achieves a wide linear response of 0–1050 kPa and sensitivity of 15.4 kPa
−1
. The large working range and the microcavity structure enable the sensor to fully meet the requirements of BP detection at the radial artery. A database of 228 BP data (60-s data fragment detected by MAGPS) and 11,804 pulse waves from 9 healthy subjects and 5 hypertensive subjects is built. Finally, the BP was detected and analyzed automatically by combining MAGPS and a two-stage convolutional neural network algorithm. For the BP detection method at local radial artery, the first stage algorithm first determines whether the subject has hypertension by the pulse wave. Then, the second stage algorithm can diagnose systolic and diastolic BP with the accuracy of 93.5% and 97.8% within a 10 mmHg error, respectively. This work demonstrates a new BP detection method based on single vessel, which greatly promotes the efficiency of BP detection.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-024-6969-7</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Algorithms ; Artificial neural networks ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Blood pressure ; Blood vessels ; Chemistry and Materials Science ; Condensed Matter Physics ; Error detection ; Gas pressure ; Graphene ; Hypertension ; Materials Science ; Measurement methods ; Monitoring ; Nanotechnology ; Neural networks ; Pressure sensors ; Research Article ; Sensors ; Telemedicine</subject><ispartof>Nano research, 2024-11, Vol.17 (11), p.10058-10068</ispartof><rights>Tsinghua University Press 2024</rights><rights>Copyright Springer Nature B.V. Nov 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-1f1ae7d71a8f774f78cf46bf8355e3e57e5ff8261c163b744622d0e10c47a7533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-024-6969-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-024-6969-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Luo, Jinan</creatorcontrib><creatorcontrib>Wu, Jingzhi</creatorcontrib><creatorcontrib>Zheng, Xiaopeng</creatorcontrib><creatorcontrib>Xiong, Haoran</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Liu, Haidong</creatorcontrib><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Liu, Houfang</creatorcontrib><creatorcontrib>Han, Fei</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Deng, Zhikang</creatorcontrib><creatorcontrib>Liu, Chuting</creatorcontrib><creatorcontrib>Cui, Tianrui</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Ren, Tian-Ling</creatorcontrib><creatorcontrib>Zhou, Jianhua</creatorcontrib><creatorcontrib>Qiao, Yancong</creatorcontrib><title>Microcavity assisted graphene pressure sensor for single-vessel local blood pressure monitoring</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Dynamic monitoring of blood pressure (BP) is beneficial to obtain comprehensive cardiovascular information of patients throughout the day. However, the clinical BP measurement method relies on wearing a bulky cuff, which limits the long-term monitoring and control of BP. In this work, a microcavity assisted graphene pressure sensor (MAGPS) for single-vessel local BP monitoring is designed to replace the cuff. The microcavity structure increases the working range of the sensor by gas pressure buffering. Therefore, the MAGPS achieves a wide linear response of 0–1050 kPa and sensitivity of 15.4 kPa
−1
. The large working range and the microcavity structure enable the sensor to fully meet the requirements of BP detection at the radial artery. A database of 228 BP data (60-s data fragment detected by MAGPS) and 11,804 pulse waves from 9 healthy subjects and 5 hypertensive subjects is built. Finally, the BP was detected and analyzed automatically by combining MAGPS and a two-stage convolutional neural network algorithm. For the BP detection method at local radial artery, the first stage algorithm first determines whether the subject has hypertension by the pulse wave. Then, the second stage algorithm can diagnose systolic and diastolic BP with the accuracy of 93.5% and 97.8% within a 10 mmHg error, respectively. This work demonstrates a new BP detection method based on single vessel, which greatly promotes the efficiency of BP detection.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Blood pressure</subject><subject>Blood vessels</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Error detection</subject><subject>Gas pressure</subject><subject>Graphene</subject><subject>Hypertension</subject><subject>Materials Science</subject><subject>Measurement methods</subject><subject>Monitoring</subject><subject>Nanotechnology</subject><subject>Neural networks</subject><subject>Pressure sensors</subject><subject>Research Article</subject><subject>Sensors</subject><subject>Telemedicine</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKxDAQDaLguvoB3gqeo0maJulRFnWFFS96Dtl2snbpNjXTXdi_N6XKnhwYZmDee8N7hNxyds8Z0w_IhdCSMiGpKlVJ9RmZ8bI0lKU6_9u5kJfkCnHLmBJcmhmxb00VQ-UOzXDMHGKDA9TZJrr-CzrI-giI-wgZQochZj41Nt2mBXpIF2izNpHbbN2GUJ_Qu9A1Q4gJeE0uvGsRbn7nnHw-P30slnT1_vK6eFzRipdmoNxzB7rW3BmvtfTaVF6qtTd5UUAOhYbCeyMUr7jK11pKJUTNgLNKaqeLPJ-Tu0m3j-F7DzjYbdjHLr20eXItDFP5iOITKnlGjOBtH5udi0fLmR1ztFOONuVoxxytThwxcbAfDUE8Kf9P-gGBIXcr</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Luo, Jinan</creator><creator>Wu, Jingzhi</creator><creator>Zheng, Xiaopeng</creator><creator>Xiong, Haoran</creator><creator>Lin, Lin</creator><creator>Liu, Chang</creator><creator>Liu, Haidong</creator><creator>Tang, Hao</creator><creator>Liu, Houfang</creator><creator>Han, Fei</creator><creator>Liu, Zhiyuan</creator><creator>Deng, Zhikang</creator><creator>Liu, Chuting</creator><creator>Cui, Tianrui</creator><creator>Li, Bo</creator><creator>Ren, Tian-Ling</creator><creator>Zhou, Jianhua</creator><creator>Qiao, Yancong</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20241101</creationdate><title>Microcavity assisted graphene pressure sensor for single-vessel local blood pressure monitoring</title><author>Luo, Jinan ; Wu, Jingzhi ; Zheng, Xiaopeng ; Xiong, Haoran ; Lin, Lin ; Liu, Chang ; Liu, Haidong ; Tang, Hao ; Liu, Houfang ; Han, Fei ; Liu, Zhiyuan ; Deng, Zhikang ; Liu, Chuting ; Cui, Tianrui ; Li, Bo ; Ren, Tian-Ling ; Zhou, Jianhua ; Qiao, Yancong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-1f1ae7d71a8f774f78cf46bf8355e3e57e5ff8261c163b744622d0e10c47a7533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Blood pressure</topic><topic>Blood vessels</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Error detection</topic><topic>Gas pressure</topic><topic>Graphene</topic><topic>Hypertension</topic><topic>Materials Science</topic><topic>Measurement methods</topic><topic>Monitoring</topic><topic>Nanotechnology</topic><topic>Neural networks</topic><topic>Pressure sensors</topic><topic>Research Article</topic><topic>Sensors</topic><topic>Telemedicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jinan</creatorcontrib><creatorcontrib>Wu, Jingzhi</creatorcontrib><creatorcontrib>Zheng, Xiaopeng</creatorcontrib><creatorcontrib>Xiong, Haoran</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Liu, Haidong</creatorcontrib><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Liu, Houfang</creatorcontrib><creatorcontrib>Han, Fei</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Deng, Zhikang</creatorcontrib><creatorcontrib>Liu, Chuting</creatorcontrib><creatorcontrib>Cui, Tianrui</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Ren, Tian-Ling</creatorcontrib><creatorcontrib>Zhou, Jianhua</creatorcontrib><creatorcontrib>Qiao, Yancong</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Jinan</au><au>Wu, Jingzhi</au><au>Zheng, Xiaopeng</au><au>Xiong, Haoran</au><au>Lin, Lin</au><au>Liu, Chang</au><au>Liu, Haidong</au><au>Tang, Hao</au><au>Liu, Houfang</au><au>Han, Fei</au><au>Liu, Zhiyuan</au><au>Deng, Zhikang</au><au>Liu, Chuting</au><au>Cui, Tianrui</au><au>Li, Bo</au><au>Ren, Tian-Ling</au><au>Zhou, Jianhua</au><au>Qiao, Yancong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microcavity assisted graphene pressure sensor for single-vessel local blood pressure monitoring</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>17</volume><issue>11</issue><spage>10058</spage><epage>10068</epage><pages>10058-10068</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Dynamic monitoring of blood pressure (BP) is beneficial to obtain comprehensive cardiovascular information of patients throughout the day. However, the clinical BP measurement method relies on wearing a bulky cuff, which limits the long-term monitoring and control of BP. In this work, a microcavity assisted graphene pressure sensor (MAGPS) for single-vessel local BP monitoring is designed to replace the cuff. The microcavity structure increases the working range of the sensor by gas pressure buffering. Therefore, the MAGPS achieves a wide linear response of 0–1050 kPa and sensitivity of 15.4 kPa
−1
. The large working range and the microcavity structure enable the sensor to fully meet the requirements of BP detection at the radial artery. A database of 228 BP data (60-s data fragment detected by MAGPS) and 11,804 pulse waves from 9 healthy subjects and 5 hypertensive subjects is built. Finally, the BP was detected and analyzed automatically by combining MAGPS and a two-stage convolutional neural network algorithm. For the BP detection method at local radial artery, the first stage algorithm first determines whether the subject has hypertension by the pulse wave. Then, the second stage algorithm can diagnose systolic and diastolic BP with the accuracy of 93.5% and 97.8% within a 10 mmHg error, respectively. This work demonstrates a new BP detection method based on single vessel, which greatly promotes the efficiency of BP detection.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-024-6969-7</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2024-11, Vol.17 (11), p.10058-10068 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_3124280633 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial neural networks Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Blood pressure Blood vessels Chemistry and Materials Science Condensed Matter Physics Error detection Gas pressure Graphene Hypertension Materials Science Measurement methods Monitoring Nanotechnology Neural networks Pressure sensors Research Article Sensors Telemedicine |
title | Microcavity assisted graphene pressure sensor for single-vessel local blood pressure monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microcavity%20assisted%20graphene%20pressure%20sensor%20for%20single-vessel%20local%20blood%20pressure%20monitoring&rft.jtitle=Nano%20research&rft.au=Luo,%20Jinan&rft.date=2024-11-01&rft.volume=17&rft.issue=11&rft.spage=10058&rft.epage=10068&rft.pages=10058-10068&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-024-6969-7&rft_dat=%3Cproquest_cross%3E3124280633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124280633&rft_id=info:pmid/&rfr_iscdi=true |