Credit rating prediction with supply chain information: a machine learning perspective
In this paper, we adopt an ensemble machine learning framework—a Light Gradient Boosting Machine (LightGBM) and develop an algorithmic credit rating prediction model by innovatively incorporating firms’ extra supply chain information both from suppliers and customers. By utilizing data from listed f...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2024-11, Vol.342 (1), p.657-686 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 686 |
---|---|
container_issue | 1 |
container_start_page | 657 |
container_title | Annals of operations research |
container_volume | 342 |
creator | Ren, Long Cong, Shaojie Xue, Xinlong Gong, Daqing |
description | In this paper, we adopt an ensemble machine learning framework—a Light Gradient Boosting Machine (LightGBM) and develop an algorithmic credit rating prediction model by innovatively incorporating firms’ extra supply chain information both from suppliers and customers. By utilizing data from listed firms in North America from 2006 to 2020, our results find that the accuracy of the prediction improves by incorporating supply chain information in the previous year, compared to the inclusion of supply chain information in the current year. Besides, we identify the most important factors the stakeholders should pay attention to. Interestingly, we show that the models utilizing the current year’s information perform better after the strike of the COVID-19, indicating that the epidemics may have accelerated the spread of credit risk along the supply chain. Furthermore, supplier information is found to be more valuable than customer information in predicting the focal firm’s credit rating. A comparison of our framework with the existing methods vindicates the robustness of our main results. |
doi_str_mv | 10.1007/s10479-023-05662-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3124280500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124280500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-864193e6124b14022749d5c7cefd3409d436ab95927752d24fd1fdd3e13e014a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3QySTa73qT4BYIX9RrSTbZNabNrslX67912BW-ehmHe5x14CLnkcM0B9E3mIHXFAAUDVRTI8IhMuNLIKiHKYzIBVJIpIeCUnOW8AgDOSzUhH7PkXehpsn2IC9rtt7oPbaTfoV_SvO269Y7WSxsiDbFp08bur7fU0o2tlyF6uvY2xQPsU-78QH_5c3LS2HX2F79zSt4f7t9mT-zl9fF5dvfCatTQs7KQvBK-4CjnXAKilpVTta5944SEyklR2HmlKtRaoUPZON44JzwXHri0Ykquxt4utZ9bn3uzarcpDi-NGEqxBAUwpHBM1anNOfnGdClsbNoZDmbvz4z-zODPHPwZHCAxQnkIx4VPf9X_UD8-XHLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124280500</pqid></control><display><type>article</type><title>Credit rating prediction with supply chain information: a machine learning perspective</title><source>SpringerLink Journals</source><creator>Ren, Long ; Cong, Shaojie ; Xue, Xinlong ; Gong, Daqing</creator><creatorcontrib>Ren, Long ; Cong, Shaojie ; Xue, Xinlong ; Gong, Daqing</creatorcontrib><description>In this paper, we adopt an ensemble machine learning framework—a Light Gradient Boosting Machine (LightGBM) and develop an algorithmic credit rating prediction model by innovatively incorporating firms’ extra supply chain information both from suppliers and customers. By utilizing data from listed firms in North America from 2006 to 2020, our results find that the accuracy of the prediction improves by incorporating supply chain information in the previous year, compared to the inclusion of supply chain information in the current year. Besides, we identify the most important factors the stakeholders should pay attention to. Interestingly, we show that the models utilizing the current year’s information perform better after the strike of the COVID-19, indicating that the epidemics may have accelerated the spread of credit risk along the supply chain. Furthermore, supplier information is found to be more valuable than customer information in predicting the focal firm’s credit rating. A comparison of our framework with the existing methods vindicates the robustness of our main results.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-023-05662-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business and Management ; Combinatorics ; Credit ratings ; Customers ; Machine learning ; Operations Research/Decision Theory ; Original Research ; Prediction models ; Predictions ; Supply chains ; Theory of Computation</subject><ispartof>Annals of operations research, 2024-11, Vol.342 (1), p.657-686</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-864193e6124b14022749d5c7cefd3409d436ab95927752d24fd1fdd3e13e014a3</cites><orcidid>0000-0003-0222-2486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-023-05662-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-023-05662-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ren, Long</creatorcontrib><creatorcontrib>Cong, Shaojie</creatorcontrib><creatorcontrib>Xue, Xinlong</creatorcontrib><creatorcontrib>Gong, Daqing</creatorcontrib><title>Credit rating prediction with supply chain information: a machine learning perspective</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>In this paper, we adopt an ensemble machine learning framework—a Light Gradient Boosting Machine (LightGBM) and develop an algorithmic credit rating prediction model by innovatively incorporating firms’ extra supply chain information both from suppliers and customers. By utilizing data from listed firms in North America from 2006 to 2020, our results find that the accuracy of the prediction improves by incorporating supply chain information in the previous year, compared to the inclusion of supply chain information in the current year. Besides, we identify the most important factors the stakeholders should pay attention to. Interestingly, we show that the models utilizing the current year’s information perform better after the strike of the COVID-19, indicating that the epidemics may have accelerated the spread of credit risk along the supply chain. Furthermore, supplier information is found to be more valuable than customer information in predicting the focal firm’s credit rating. A comparison of our framework with the existing methods vindicates the robustness of our main results.</description><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Credit ratings</subject><subject>Customers</subject><subject>Machine learning</subject><subject>Operations Research/Decision Theory</subject><subject>Original Research</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Supply chains</subject><subject>Theory of Computation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3QySTa73qT4BYIX9RrSTbZNabNrslX67912BW-ehmHe5x14CLnkcM0B9E3mIHXFAAUDVRTI8IhMuNLIKiHKYzIBVJIpIeCUnOW8AgDOSzUhH7PkXehpsn2IC9rtt7oPbaTfoV_SvO269Y7WSxsiDbFp08bur7fU0o2tlyF6uvY2xQPsU-78QH_5c3LS2HX2F79zSt4f7t9mT-zl9fF5dvfCatTQs7KQvBK-4CjnXAKilpVTta5944SEyklR2HmlKtRaoUPZON44JzwXHri0Ykquxt4utZ9bn3uzarcpDi-NGEqxBAUwpHBM1anNOfnGdClsbNoZDmbvz4z-zODPHPwZHCAxQnkIx4VPf9X_UD8-XHLo</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Ren, Long</creator><creator>Cong, Shaojie</creator><creator>Xue, Xinlong</creator><creator>Gong, Daqing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-0222-2486</orcidid></search><sort><creationdate>20241101</creationdate><title>Credit rating prediction with supply chain information: a machine learning perspective</title><author>Ren, Long ; Cong, Shaojie ; Xue, Xinlong ; Gong, Daqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-864193e6124b14022749d5c7cefd3409d436ab95927752d24fd1fdd3e13e014a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Credit ratings</topic><topic>Customers</topic><topic>Machine learning</topic><topic>Operations Research/Decision Theory</topic><topic>Original Research</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Supply chains</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Long</creatorcontrib><creatorcontrib>Cong, Shaojie</creatorcontrib><creatorcontrib>Xue, Xinlong</creatorcontrib><creatorcontrib>Gong, Daqing</creatorcontrib><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Long</au><au>Cong, Shaojie</au><au>Xue, Xinlong</au><au>Gong, Daqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Credit rating prediction with supply chain information: a machine learning perspective</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>342</volume><issue>1</issue><spage>657</spage><epage>686</epage><pages>657-686</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>In this paper, we adopt an ensemble machine learning framework—a Light Gradient Boosting Machine (LightGBM) and develop an algorithmic credit rating prediction model by innovatively incorporating firms’ extra supply chain information both from suppliers and customers. By utilizing data from listed firms in North America from 2006 to 2020, our results find that the accuracy of the prediction improves by incorporating supply chain information in the previous year, compared to the inclusion of supply chain information in the current year. Besides, we identify the most important factors the stakeholders should pay attention to. Interestingly, we show that the models utilizing the current year’s information perform better after the strike of the COVID-19, indicating that the epidemics may have accelerated the spread of credit risk along the supply chain. Furthermore, supplier information is found to be more valuable than customer information in predicting the focal firm’s credit rating. A comparison of our framework with the existing methods vindicates the robustness of our main results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-023-05662-2</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-0222-2486</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2024-11, Vol.342 (1), p.657-686 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_proquest_journals_3124280500 |
source | SpringerLink Journals |
subjects | Business and Management Combinatorics Credit ratings Customers Machine learning Operations Research/Decision Theory Original Research Prediction models Predictions Supply chains Theory of Computation |
title | Credit rating prediction with supply chain information: a machine learning perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Credit%20rating%20prediction%20with%20supply%20chain%20information:%20a%20machine%20learning%20perspective&rft.jtitle=Annals%20of%20operations%20research&rft.au=Ren,%20Long&rft.date=2024-11-01&rft.volume=342&rft.issue=1&rft.spage=657&rft.epage=686&rft.pages=657-686&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-023-05662-2&rft_dat=%3Cproquest_cross%3E3124280500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124280500&rft_id=info:pmid/&rfr_iscdi=true |