Credit rating prediction with supply chain information: a machine learning perspective

In this paper, we adopt an ensemble machine learning framework—a Light Gradient Boosting Machine (LightGBM) and develop an algorithmic credit rating prediction model by innovatively incorporating firms’ extra supply chain information both from suppliers and customers. By utilizing data from listed f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2024-11, Vol.342 (1), p.657-686
Hauptverfasser: Ren, Long, Cong, Shaojie, Xue, Xinlong, Gong, Daqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 686
container_issue 1
container_start_page 657
container_title Annals of operations research
container_volume 342
creator Ren, Long
Cong, Shaojie
Xue, Xinlong
Gong, Daqing
description In this paper, we adopt an ensemble machine learning framework—a Light Gradient Boosting Machine (LightGBM) and develop an algorithmic credit rating prediction model by innovatively incorporating firms’ extra supply chain information both from suppliers and customers. By utilizing data from listed firms in North America from 2006 to 2020, our results find that the accuracy of the prediction improves by incorporating supply chain information in the previous year, compared to the inclusion of supply chain information in the current year. Besides, we identify the most important factors the stakeholders should pay attention to. Interestingly, we show that the models utilizing the current year’s information perform better after the strike of the COVID-19, indicating that the epidemics may have accelerated the spread of credit risk along the supply chain. Furthermore, supplier information is found to be more valuable than customer information in predicting the focal firm’s credit rating. A comparison of our framework with the existing methods vindicates the robustness of our main results.
doi_str_mv 10.1007/s10479-023-05662-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3124280500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124280500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-864193e6124b14022749d5c7cefd3409d436ab95927752d24fd1fdd3e13e014a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3QySTa73qT4BYIX9RrSTbZNabNrslX67912BW-ehmHe5x14CLnkcM0B9E3mIHXFAAUDVRTI8IhMuNLIKiHKYzIBVJIpIeCUnOW8AgDOSzUhH7PkXehpsn2IC9rtt7oPbaTfoV_SvO269Y7WSxsiDbFp08bur7fU0o2tlyF6uvY2xQPsU-78QH_5c3LS2HX2F79zSt4f7t9mT-zl9fF5dvfCatTQs7KQvBK-4CjnXAKilpVTta5944SEyklR2HmlKtRaoUPZON44JzwXHri0Ykquxt4utZ9bn3uzarcpDi-NGEqxBAUwpHBM1anNOfnGdClsbNoZDmbvz4z-zODPHPwZHCAxQnkIx4VPf9X_UD8-XHLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124280500</pqid></control><display><type>article</type><title>Credit rating prediction with supply chain information: a machine learning perspective</title><source>SpringerLink Journals</source><creator>Ren, Long ; Cong, Shaojie ; Xue, Xinlong ; Gong, Daqing</creator><creatorcontrib>Ren, Long ; Cong, Shaojie ; Xue, Xinlong ; Gong, Daqing</creatorcontrib><description>In this paper, we adopt an ensemble machine learning framework—a Light Gradient Boosting Machine (LightGBM) and develop an algorithmic credit rating prediction model by innovatively incorporating firms’ extra supply chain information both from suppliers and customers. By utilizing data from listed firms in North America from 2006 to 2020, our results find that the accuracy of the prediction improves by incorporating supply chain information in the previous year, compared to the inclusion of supply chain information in the current year. Besides, we identify the most important factors the stakeholders should pay attention to. Interestingly, we show that the models utilizing the current year’s information perform better after the strike of the COVID-19, indicating that the epidemics may have accelerated the spread of credit risk along the supply chain. Furthermore, supplier information is found to be more valuable than customer information in predicting the focal firm’s credit rating. A comparison of our framework with the existing methods vindicates the robustness of our main results.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-023-05662-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business and Management ; Combinatorics ; Credit ratings ; Customers ; Machine learning ; Operations Research/Decision Theory ; Original Research ; Prediction models ; Predictions ; Supply chains ; Theory of Computation</subject><ispartof>Annals of operations research, 2024-11, Vol.342 (1), p.657-686</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-864193e6124b14022749d5c7cefd3409d436ab95927752d24fd1fdd3e13e014a3</cites><orcidid>0000-0003-0222-2486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-023-05662-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-023-05662-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ren, Long</creatorcontrib><creatorcontrib>Cong, Shaojie</creatorcontrib><creatorcontrib>Xue, Xinlong</creatorcontrib><creatorcontrib>Gong, Daqing</creatorcontrib><title>Credit rating prediction with supply chain information: a machine learning perspective</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>In this paper, we adopt an ensemble machine learning framework—a Light Gradient Boosting Machine (LightGBM) and develop an algorithmic credit rating prediction model by innovatively incorporating firms’ extra supply chain information both from suppliers and customers. By utilizing data from listed firms in North America from 2006 to 2020, our results find that the accuracy of the prediction improves by incorporating supply chain information in the previous year, compared to the inclusion of supply chain information in the current year. Besides, we identify the most important factors the stakeholders should pay attention to. Interestingly, we show that the models utilizing the current year’s information perform better after the strike of the COVID-19, indicating that the epidemics may have accelerated the spread of credit risk along the supply chain. Furthermore, supplier information is found to be more valuable than customer information in predicting the focal firm’s credit rating. A comparison of our framework with the existing methods vindicates the robustness of our main results.</description><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Credit ratings</subject><subject>Customers</subject><subject>Machine learning</subject><subject>Operations Research/Decision Theory</subject><subject>Original Research</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Supply chains</subject><subject>Theory of Computation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3QySTa73qT4BYIX9RrSTbZNabNrslX67912BW-ehmHe5x14CLnkcM0B9E3mIHXFAAUDVRTI8IhMuNLIKiHKYzIBVJIpIeCUnOW8AgDOSzUhH7PkXehpsn2IC9rtt7oPbaTfoV_SvO269Y7WSxsiDbFp08bur7fU0o2tlyF6uvY2xQPsU-78QH_5c3LS2HX2F79zSt4f7t9mT-zl9fF5dvfCatTQs7KQvBK-4CjnXAKilpVTta5944SEyklR2HmlKtRaoUPZON44JzwXHri0Ykquxt4utZ9bn3uzarcpDi-NGEqxBAUwpHBM1anNOfnGdClsbNoZDmbvz4z-zODPHPwZHCAxQnkIx4VPf9X_UD8-XHLo</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Ren, Long</creator><creator>Cong, Shaojie</creator><creator>Xue, Xinlong</creator><creator>Gong, Daqing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-0222-2486</orcidid></search><sort><creationdate>20241101</creationdate><title>Credit rating prediction with supply chain information: a machine learning perspective</title><author>Ren, Long ; Cong, Shaojie ; Xue, Xinlong ; Gong, Daqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-864193e6124b14022749d5c7cefd3409d436ab95927752d24fd1fdd3e13e014a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Credit ratings</topic><topic>Customers</topic><topic>Machine learning</topic><topic>Operations Research/Decision Theory</topic><topic>Original Research</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Supply chains</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Long</creatorcontrib><creatorcontrib>Cong, Shaojie</creatorcontrib><creatorcontrib>Xue, Xinlong</creatorcontrib><creatorcontrib>Gong, Daqing</creatorcontrib><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Long</au><au>Cong, Shaojie</au><au>Xue, Xinlong</au><au>Gong, Daqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Credit rating prediction with supply chain information: a machine learning perspective</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>342</volume><issue>1</issue><spage>657</spage><epage>686</epage><pages>657-686</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>In this paper, we adopt an ensemble machine learning framework—a Light Gradient Boosting Machine (LightGBM) and develop an algorithmic credit rating prediction model by innovatively incorporating firms’ extra supply chain information both from suppliers and customers. By utilizing data from listed firms in North America from 2006 to 2020, our results find that the accuracy of the prediction improves by incorporating supply chain information in the previous year, compared to the inclusion of supply chain information in the current year. Besides, we identify the most important factors the stakeholders should pay attention to. Interestingly, we show that the models utilizing the current year’s information perform better after the strike of the COVID-19, indicating that the epidemics may have accelerated the spread of credit risk along the supply chain. Furthermore, supplier information is found to be more valuable than customer information in predicting the focal firm’s credit rating. A comparison of our framework with the existing methods vindicates the robustness of our main results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-023-05662-2</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-0222-2486</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2024-11, Vol.342 (1), p.657-686
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_journals_3124280500
source SpringerLink Journals
subjects Business and Management
Combinatorics
Credit ratings
Customers
Machine learning
Operations Research/Decision Theory
Original Research
Prediction models
Predictions
Supply chains
Theory of Computation
title Credit rating prediction with supply chain information: a machine learning perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Credit%20rating%20prediction%20with%20supply%20chain%20information:%20a%20machine%20learning%20perspective&rft.jtitle=Annals%20of%20operations%20research&rft.au=Ren,%20Long&rft.date=2024-11-01&rft.volume=342&rft.issue=1&rft.spage=657&rft.epage=686&rft.pages=657-686&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-023-05662-2&rft_dat=%3Cproquest_cross%3E3124280500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124280500&rft_id=info:pmid/&rfr_iscdi=true