Arctic soil carbon trajectories shaped by plant–microbe interactions
Rapid warming in the Arctic threatens to amplify climate change by releasing the region’s vast stocks of soil carbon to the atmosphere. Increased nutrient availability may exacerbate soil carbon losses by stimulating microbial decomposition or offset them by increasing primary productivity. The outc...
Gespeichert in:
Veröffentlicht in: | Nature climate change 2024-11, Vol.14 (11), p.1178-1185 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1185 |
---|---|
container_issue | 11 |
container_start_page | 1178 |
container_title | Nature climate change |
container_volume | 14 |
creator | Machmuller, Megan B. Lynch, Laurel M. Mosier, Samantha L. Shaver, Gaius R. Calderon, Francisco Gough, Laura Haddix, Michelle L. McLaren, Jennie R. Paul, Eldor A. Weintraub, Michael N. Cotrufo, M. Francesca Wallenstein, Matthew D. |
description | Rapid warming in the Arctic threatens to amplify climate change by releasing the region’s vast stocks of soil carbon to the atmosphere. Increased nutrient availability may exacerbate soil carbon losses by stimulating microbial decomposition or offset them by increasing primary productivity. The outcome of these competing feedbacks remains unclear. Here we present results from a long-term nutrient addition experiment in northern Alaska, United States, coupled with a mechanistic isotope-tracing experiment. We found that soil carbon losses observed during the first 20 years of fertilization were caused by microbial priming and were completely reversed in the subsequent 15 years by shrub expansion which promoted an increasingly efficient carbon–nitrogen economy. Incorporating long-term stoichiometric responses in Earth system models will improve predictions of the magnitude, direction and timing of the Arctic carbon–climate feedback.
Arctic warming is thought to lead to large losses in soil carbon stocks. Here a 35-year-long fertilization experiment in Alaska shows that increased shrub productivity and changes in plant–microbial feedbacks may eventually reverse trends of carbon loss and restore the soil carbon sink. |
doi_str_mv | 10.1038/s41558-024-02147-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3124210701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124210701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-83d927ffab402285ef6fc3c0e9234d8418242cea0294584a8cfa921c75dca3063</originalsourceid><addsrcrecordid>eNp9kM9KxDAQxoMouKz7Ap4CnquTP23S47K4Kix4UfAW0jTRlt2mJtnD3nwH39AnMVrRmwPDDMP3mxk-hM4JXBJg8ipyUpayAMpzEi4KdoRmRORRJWp5_NvLp1O0iLGHHIJUrKpnaL0MJnUGR99tsdGh8QNOQffWJB86G3F80aNtcXPA41YP6ePtfdeZ4BuLuyHZoDPth3iGTpzeRrv4qXP0uL5-WN0Wm_ubu9VyUxgKkArJ2poK53TDgVJZWlc5wwzYmjLeSk4k5dRYDbTmpeRaGqdrSowoW6MZVGyOLqa9Y_CvexuT6v0-DPmkYiSzBASQrKKTKj8aY7BOjaHb6XBQBNSXZWqyTGXL1LdlimWITVDM4uHZhr_V_1CfiuRvUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124210701</pqid></control><display><type>article</type><title>Arctic soil carbon trajectories shaped by plant–microbe interactions</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Machmuller, Megan B. ; Lynch, Laurel M. ; Mosier, Samantha L. ; Shaver, Gaius R. ; Calderon, Francisco ; Gough, Laura ; Haddix, Michelle L. ; McLaren, Jennie R. ; Paul, Eldor A. ; Weintraub, Michael N. ; Cotrufo, M. Francesca ; Wallenstein, Matthew D.</creator><creatorcontrib>Machmuller, Megan B. ; Lynch, Laurel M. ; Mosier, Samantha L. ; Shaver, Gaius R. ; Calderon, Francisco ; Gough, Laura ; Haddix, Michelle L. ; McLaren, Jennie R. ; Paul, Eldor A. ; Weintraub, Michael N. ; Cotrufo, M. Francesca ; Wallenstein, Matthew D.</creatorcontrib><description>Rapid warming in the Arctic threatens to amplify climate change by releasing the region’s vast stocks of soil carbon to the atmosphere. Increased nutrient availability may exacerbate soil carbon losses by stimulating microbial decomposition or offset them by increasing primary productivity. The outcome of these competing feedbacks remains unclear. Here we present results from a long-term nutrient addition experiment in northern Alaska, United States, coupled with a mechanistic isotope-tracing experiment. We found that soil carbon losses observed during the first 20 years of fertilization were caused by microbial priming and were completely reversed in the subsequent 15 years by shrub expansion which promoted an increasingly efficient carbon–nitrogen economy. Incorporating long-term stoichiometric responses in Earth system models will improve predictions of the magnitude, direction and timing of the Arctic carbon–climate feedback.
Arctic warming is thought to lead to large losses in soil carbon stocks. Here a 35-year-long fertilization experiment in Alaska shows that increased shrub productivity and changes in plant–microbial feedbacks may eventually reverse trends of carbon loss and restore the soil carbon sink.</description><identifier>ISSN: 1758-678X</identifier><identifier>EISSN: 1758-6798</identifier><identifier>DOI: 10.1038/s41558-024-02147-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/2165 ; 704/47 ; Arctic soils ; Biological fertilization ; Carbon ; Carbon sinks ; Climate Change ; Climate Change/Climate Change Impacts ; Climate feedback ; Climate models ; Climate prediction ; Earth and Environmental Science ; Environment ; Environmental Law/Policy/Ecojustice ; Fertilization ; Global warming ; Microorganisms ; Nutrient availability ; Nutrient loss ; Nutrients ; Primary production ; Productivity ; Soil ; Soils</subject><ispartof>Nature climate change, 2024-11, Vol.14 (11), p.1178-1185</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-83d927ffab402285ef6fc3c0e9234d8418242cea0294584a8cfa921c75dca3063</cites><orcidid>0000-0002-8825-9417 ; 0000-0002-6745-9989 ; 0000-0002-6219-1442 ; 0000-0003-2004-4783 ; 0000-0002-9623-2855 ; 0000-0002-6191-8953 ; 0000-0003-0984-0404 ; 0000-0002-0204-3712 ; 0000-0002-9312-7910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41558-024-02147-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41558-024-02147-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Machmuller, Megan B.</creatorcontrib><creatorcontrib>Lynch, Laurel M.</creatorcontrib><creatorcontrib>Mosier, Samantha L.</creatorcontrib><creatorcontrib>Shaver, Gaius R.</creatorcontrib><creatorcontrib>Calderon, Francisco</creatorcontrib><creatorcontrib>Gough, Laura</creatorcontrib><creatorcontrib>Haddix, Michelle L.</creatorcontrib><creatorcontrib>McLaren, Jennie R.</creatorcontrib><creatorcontrib>Paul, Eldor A.</creatorcontrib><creatorcontrib>Weintraub, Michael N.</creatorcontrib><creatorcontrib>Cotrufo, M. Francesca</creatorcontrib><creatorcontrib>Wallenstein, Matthew D.</creatorcontrib><title>Arctic soil carbon trajectories shaped by plant–microbe interactions</title><title>Nature climate change</title><addtitle>Nat. Clim. Chang</addtitle><description>Rapid warming in the Arctic threatens to amplify climate change by releasing the region’s vast stocks of soil carbon to the atmosphere. Increased nutrient availability may exacerbate soil carbon losses by stimulating microbial decomposition or offset them by increasing primary productivity. The outcome of these competing feedbacks remains unclear. Here we present results from a long-term nutrient addition experiment in northern Alaska, United States, coupled with a mechanistic isotope-tracing experiment. We found that soil carbon losses observed during the first 20 years of fertilization were caused by microbial priming and were completely reversed in the subsequent 15 years by shrub expansion which promoted an increasingly efficient carbon–nitrogen economy. Incorporating long-term stoichiometric responses in Earth system models will improve predictions of the magnitude, direction and timing of the Arctic carbon–climate feedback.
Arctic warming is thought to lead to large losses in soil carbon stocks. Here a 35-year-long fertilization experiment in Alaska shows that increased shrub productivity and changes in plant–microbial feedbacks may eventually reverse trends of carbon loss and restore the soil carbon sink.</description><subject>631/158/2165</subject><subject>704/47</subject><subject>Arctic soils</subject><subject>Biological fertilization</subject><subject>Carbon</subject><subject>Carbon sinks</subject><subject>Climate Change</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Climate feedback</subject><subject>Climate models</subject><subject>Climate prediction</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Law/Policy/Ecojustice</subject><subject>Fertilization</subject><subject>Global warming</subject><subject>Microorganisms</subject><subject>Nutrient availability</subject><subject>Nutrient loss</subject><subject>Nutrients</subject><subject>Primary production</subject><subject>Productivity</subject><subject>Soil</subject><subject>Soils</subject><issn>1758-678X</issn><issn>1758-6798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KxDAQxoMouKz7Ap4CnquTP23S47K4Kix4UfAW0jTRlt2mJtnD3nwH39AnMVrRmwPDDMP3mxk-hM4JXBJg8ipyUpayAMpzEi4KdoRmRORRJWp5_NvLp1O0iLGHHIJUrKpnaL0MJnUGR99tsdGh8QNOQffWJB86G3F80aNtcXPA41YP6ePtfdeZ4BuLuyHZoDPth3iGTpzeRrv4qXP0uL5-WN0Wm_ubu9VyUxgKkArJ2poK53TDgVJZWlc5wwzYmjLeSk4k5dRYDbTmpeRaGqdrSowoW6MZVGyOLqa9Y_CvexuT6v0-DPmkYiSzBASQrKKTKj8aY7BOjaHb6XBQBNSXZWqyTGXL1LdlimWITVDM4uHZhr_V_1CfiuRvUw</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Machmuller, Megan B.</creator><creator>Lynch, Laurel M.</creator><creator>Mosier, Samantha L.</creator><creator>Shaver, Gaius R.</creator><creator>Calderon, Francisco</creator><creator>Gough, Laura</creator><creator>Haddix, Michelle L.</creator><creator>McLaren, Jennie R.</creator><creator>Paul, Eldor A.</creator><creator>Weintraub, Michael N.</creator><creator>Cotrufo, M. Francesca</creator><creator>Wallenstein, Matthew D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8825-9417</orcidid><orcidid>https://orcid.org/0000-0002-6745-9989</orcidid><orcidid>https://orcid.org/0000-0002-6219-1442</orcidid><orcidid>https://orcid.org/0000-0003-2004-4783</orcidid><orcidid>https://orcid.org/0000-0002-9623-2855</orcidid><orcidid>https://orcid.org/0000-0002-6191-8953</orcidid><orcidid>https://orcid.org/0000-0003-0984-0404</orcidid><orcidid>https://orcid.org/0000-0002-0204-3712</orcidid><orcidid>https://orcid.org/0000-0002-9312-7910</orcidid></search><sort><creationdate>20241101</creationdate><title>Arctic soil carbon trajectories shaped by plant–microbe interactions</title><author>Machmuller, Megan B. ; Lynch, Laurel M. ; Mosier, Samantha L. ; Shaver, Gaius R. ; Calderon, Francisco ; Gough, Laura ; Haddix, Michelle L. ; McLaren, Jennie R. ; Paul, Eldor A. ; Weintraub, Michael N. ; Cotrufo, M. Francesca ; Wallenstein, Matthew D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-83d927ffab402285ef6fc3c0e9234d8418242cea0294584a8cfa921c75dca3063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/158/2165</topic><topic>704/47</topic><topic>Arctic soils</topic><topic>Biological fertilization</topic><topic>Carbon</topic><topic>Carbon sinks</topic><topic>Climate Change</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Climate feedback</topic><topic>Climate models</topic><topic>Climate prediction</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Law/Policy/Ecojustice</topic><topic>Fertilization</topic><topic>Global warming</topic><topic>Microorganisms</topic><topic>Nutrient availability</topic><topic>Nutrient loss</topic><topic>Nutrients</topic><topic>Primary production</topic><topic>Productivity</topic><topic>Soil</topic><topic>Soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machmuller, Megan B.</creatorcontrib><creatorcontrib>Lynch, Laurel M.</creatorcontrib><creatorcontrib>Mosier, Samantha L.</creatorcontrib><creatorcontrib>Shaver, Gaius R.</creatorcontrib><creatorcontrib>Calderon, Francisco</creatorcontrib><creatorcontrib>Gough, Laura</creatorcontrib><creatorcontrib>Haddix, Michelle L.</creatorcontrib><creatorcontrib>McLaren, Jennie R.</creatorcontrib><creatorcontrib>Paul, Eldor A.</creatorcontrib><creatorcontrib>Weintraub, Michael N.</creatorcontrib><creatorcontrib>Cotrufo, M. Francesca</creatorcontrib><creatorcontrib>Wallenstein, Matthew D.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Nature climate change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machmuller, Megan B.</au><au>Lynch, Laurel M.</au><au>Mosier, Samantha L.</au><au>Shaver, Gaius R.</au><au>Calderon, Francisco</au><au>Gough, Laura</au><au>Haddix, Michelle L.</au><au>McLaren, Jennie R.</au><au>Paul, Eldor A.</au><au>Weintraub, Michael N.</au><au>Cotrufo, M. Francesca</au><au>Wallenstein, Matthew D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arctic soil carbon trajectories shaped by plant–microbe interactions</atitle><jtitle>Nature climate change</jtitle><stitle>Nat. Clim. Chang</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>14</volume><issue>11</issue><spage>1178</spage><epage>1185</epage><pages>1178-1185</pages><issn>1758-678X</issn><eissn>1758-6798</eissn><abstract>Rapid warming in the Arctic threatens to amplify climate change by releasing the region’s vast stocks of soil carbon to the atmosphere. Increased nutrient availability may exacerbate soil carbon losses by stimulating microbial decomposition or offset them by increasing primary productivity. The outcome of these competing feedbacks remains unclear. Here we present results from a long-term nutrient addition experiment in northern Alaska, United States, coupled with a mechanistic isotope-tracing experiment. We found that soil carbon losses observed during the first 20 years of fertilization were caused by microbial priming and were completely reversed in the subsequent 15 years by shrub expansion which promoted an increasingly efficient carbon–nitrogen economy. Incorporating long-term stoichiometric responses in Earth system models will improve predictions of the magnitude, direction and timing of the Arctic carbon–climate feedback.
Arctic warming is thought to lead to large losses in soil carbon stocks. Here a 35-year-long fertilization experiment in Alaska shows that increased shrub productivity and changes in plant–microbial feedbacks may eventually reverse trends of carbon loss and restore the soil carbon sink.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41558-024-02147-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8825-9417</orcidid><orcidid>https://orcid.org/0000-0002-6745-9989</orcidid><orcidid>https://orcid.org/0000-0002-6219-1442</orcidid><orcidid>https://orcid.org/0000-0003-2004-4783</orcidid><orcidid>https://orcid.org/0000-0002-9623-2855</orcidid><orcidid>https://orcid.org/0000-0002-6191-8953</orcidid><orcidid>https://orcid.org/0000-0003-0984-0404</orcidid><orcidid>https://orcid.org/0000-0002-0204-3712</orcidid><orcidid>https://orcid.org/0000-0002-9312-7910</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1758-678X |
ispartof | Nature climate change, 2024-11, Vol.14 (11), p.1178-1185 |
issn | 1758-678X 1758-6798 |
language | eng |
recordid | cdi_proquest_journals_3124210701 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 631/158/2165 704/47 Arctic soils Biological fertilization Carbon Carbon sinks Climate Change Climate Change/Climate Change Impacts Climate feedback Climate models Climate prediction Earth and Environmental Science Environment Environmental Law/Policy/Ecojustice Fertilization Global warming Microorganisms Nutrient availability Nutrient loss Nutrients Primary production Productivity Soil Soils |
title | Arctic soil carbon trajectories shaped by plant–microbe interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arctic%20soil%20carbon%20trajectories%20shaped%20by%20plant%E2%80%93microbe%20interactions&rft.jtitle=Nature%20climate%20change&rft.au=Machmuller,%20Megan%20B.&rft.date=2024-11-01&rft.volume=14&rft.issue=11&rft.spage=1178&rft.epage=1185&rft.pages=1178-1185&rft.issn=1758-678X&rft.eissn=1758-6798&rft_id=info:doi/10.1038/s41558-024-02147-3&rft_dat=%3Cproquest_cross%3E3124210701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124210701&rft_id=info:pmid/&rfr_iscdi=true |