A Semiparametric Approach to Causal Inference
In causal inference, an important problem is to quantify the effects of interventions or treatments. Many studies focus on estimating the mean causal effects; however, these estimands may offer limited insight since two distributions can share the same mean yet exhibit significant differences. Exami...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Archer Gong Zhang Reid, Nancy Sun, Qiang |
description | In causal inference, an important problem is to quantify the effects of interventions or treatments. Many studies focus on estimating the mean causal effects; however, these estimands may offer limited insight since two distributions can share the same mean yet exhibit significant differences. Examining the causal effects from a distributional perspective provides a more thorough understanding. In this paper, we employ a semiparametric density ratio model (DRM) to characterize the counterfactual distributions, introducing a framework that assumes a latent structure shared by these distributions. Our model offers flexibility by avoiding strict parametric assumptions on the counterfactual distributions. Specifically, the DRM incorporates a nonparametric component that can be estimated through the method of empirical likelihood (EL), using the data from all the groups stemming from multiple interventions. Consequently, the EL-DRM framework enables inference of the counterfactual distribution functions and their functionals, facilitating direct and transparent causal inference from a distributional perspective. Numerical studies on both synthetic and real-world data validate the effectiveness of our approach. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3124192584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124192584</sourcerecordid><originalsourceid>FETCH-proquest_journals_31241925843</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdVQITs3NLEgsSsxNLSnKTFZwLCgoyk9MzlAoyVdwTiwtTsxR8MxLSy1KzUtO5WFgTUvMKU7lhdLcDMpuriHOHrpALYWlqcUl8Vn5pUV5QKl4Y0MjE0NLI1MLE2PiVAEAjPsxkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124192584</pqid></control><display><type>article</type><title>A Semiparametric Approach to Causal Inference</title><source>Free E- Journals</source><creator>Archer Gong Zhang ; Reid, Nancy ; Sun, Qiang</creator><creatorcontrib>Archer Gong Zhang ; Reid, Nancy ; Sun, Qiang</creatorcontrib><description>In causal inference, an important problem is to quantify the effects of interventions or treatments. Many studies focus on estimating the mean causal effects; however, these estimands may offer limited insight since two distributions can share the same mean yet exhibit significant differences. Examining the causal effects from a distributional perspective provides a more thorough understanding. In this paper, we employ a semiparametric density ratio model (DRM) to characterize the counterfactual distributions, introducing a framework that assumes a latent structure shared by these distributions. Our model offers flexibility by avoiding strict parametric assumptions on the counterfactual distributions. Specifically, the DRM incorporates a nonparametric component that can be estimated through the method of empirical likelihood (EL), using the data from all the groups stemming from multiple interventions. Consequently, the EL-DRM framework enables inference of the counterfactual distribution functions and their functionals, facilitating direct and transparent causal inference from a distributional perspective. Numerical studies on both synthetic and real-world data validate the effectiveness of our approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Density ratio ; Distribution functions ; Functionals ; Inference</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Archer Gong Zhang</creatorcontrib><creatorcontrib>Reid, Nancy</creatorcontrib><creatorcontrib>Sun, Qiang</creatorcontrib><title>A Semiparametric Approach to Causal Inference</title><title>arXiv.org</title><description>In causal inference, an important problem is to quantify the effects of interventions or treatments. Many studies focus on estimating the mean causal effects; however, these estimands may offer limited insight since two distributions can share the same mean yet exhibit significant differences. Examining the causal effects from a distributional perspective provides a more thorough understanding. In this paper, we employ a semiparametric density ratio model (DRM) to characterize the counterfactual distributions, introducing a framework that assumes a latent structure shared by these distributions. Our model offers flexibility by avoiding strict parametric assumptions on the counterfactual distributions. Specifically, the DRM incorporates a nonparametric component that can be estimated through the method of empirical likelihood (EL), using the data from all the groups stemming from multiple interventions. Consequently, the EL-DRM framework enables inference of the counterfactual distribution functions and their functionals, facilitating direct and transparent causal inference from a distributional perspective. Numerical studies on both synthetic and real-world data validate the effectiveness of our approach.</description><subject>Density ratio</subject><subject>Distribution functions</subject><subject>Functionals</subject><subject>Inference</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdVQITs3NLEgsSsxNLSnKTFZwLCgoyk9MzlAoyVdwTiwtTsxR8MxLSy1KzUtO5WFgTUvMKU7lhdLcDMpuriHOHrpALYWlqcUl8Vn5pUV5QKl4Y0MjE0NLI1MLE2PiVAEAjPsxkA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Archer Gong Zhang</creator><creator>Reid, Nancy</creator><creator>Sun, Qiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241101</creationdate><title>A Semiparametric Approach to Causal Inference</title><author>Archer Gong Zhang ; Reid, Nancy ; Sun, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31241925843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Density ratio</topic><topic>Distribution functions</topic><topic>Functionals</topic><topic>Inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Archer Gong Zhang</creatorcontrib><creatorcontrib>Reid, Nancy</creatorcontrib><creatorcontrib>Sun, Qiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Archer Gong Zhang</au><au>Reid, Nancy</au><au>Sun, Qiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Semiparametric Approach to Causal Inference</atitle><jtitle>arXiv.org</jtitle><date>2024-11-01</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In causal inference, an important problem is to quantify the effects of interventions or treatments. Many studies focus on estimating the mean causal effects; however, these estimands may offer limited insight since two distributions can share the same mean yet exhibit significant differences. Examining the causal effects from a distributional perspective provides a more thorough understanding. In this paper, we employ a semiparametric density ratio model (DRM) to characterize the counterfactual distributions, introducing a framework that assumes a latent structure shared by these distributions. Our model offers flexibility by avoiding strict parametric assumptions on the counterfactual distributions. Specifically, the DRM incorporates a nonparametric component that can be estimated through the method of empirical likelihood (EL), using the data from all the groups stemming from multiple interventions. Consequently, the EL-DRM framework enables inference of the counterfactual distribution functions and their functionals, facilitating direct and transparent causal inference from a distributional perspective. Numerical studies on both synthetic and real-world data validate the effectiveness of our approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3124192584 |
source | Free E- Journals |
subjects | Density ratio Distribution functions Functionals Inference |
title | A Semiparametric Approach to Causal Inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Semiparametric%20Approach%20to%20Causal%20Inference&rft.jtitle=arXiv.org&rft.au=Archer%20Gong%20Zhang&rft.date=2024-11-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3124192584%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124192584&rft_id=info:pmid/&rfr_iscdi=true |