A Semiparametric Approach to Causal Inference

In causal inference, an important problem is to quantify the effects of interventions or treatments. Many studies focus on estimating the mean causal effects; however, these estimands may offer limited insight since two distributions can share the same mean yet exhibit significant differences. Exami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Archer Gong Zhang, Reid, Nancy, Sun, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Archer Gong Zhang
Reid, Nancy
Sun, Qiang
description In causal inference, an important problem is to quantify the effects of interventions or treatments. Many studies focus on estimating the mean causal effects; however, these estimands may offer limited insight since two distributions can share the same mean yet exhibit significant differences. Examining the causal effects from a distributional perspective provides a more thorough understanding. In this paper, we employ a semiparametric density ratio model (DRM) to characterize the counterfactual distributions, introducing a framework that assumes a latent structure shared by these distributions. Our model offers flexibility by avoiding strict parametric assumptions on the counterfactual distributions. Specifically, the DRM incorporates a nonparametric component that can be estimated through the method of empirical likelihood (EL), using the data from all the groups stemming from multiple interventions. Consequently, the EL-DRM framework enables inference of the counterfactual distribution functions and their functionals, facilitating direct and transparent causal inference from a distributional perspective. Numerical studies on both synthetic and real-world data validate the effectiveness of our approach.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3124192584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124192584</sourcerecordid><originalsourceid>FETCH-proquest_journals_31241925843</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdVQITs3NLEgsSsxNLSnKTFZwLCgoyk9MzlAoyVdwTiwtTsxR8MxLSy1KzUtO5WFgTUvMKU7lhdLcDMpuriHOHrpALYWlqcUl8Vn5pUV5QKl4Y0MjE0NLI1MLE2PiVAEAjPsxkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124192584</pqid></control><display><type>article</type><title>A Semiparametric Approach to Causal Inference</title><source>Free E- Journals</source><creator>Archer Gong Zhang ; Reid, Nancy ; Sun, Qiang</creator><creatorcontrib>Archer Gong Zhang ; Reid, Nancy ; Sun, Qiang</creatorcontrib><description>In causal inference, an important problem is to quantify the effects of interventions or treatments. Many studies focus on estimating the mean causal effects; however, these estimands may offer limited insight since two distributions can share the same mean yet exhibit significant differences. Examining the causal effects from a distributional perspective provides a more thorough understanding. In this paper, we employ a semiparametric density ratio model (DRM) to characterize the counterfactual distributions, introducing a framework that assumes a latent structure shared by these distributions. Our model offers flexibility by avoiding strict parametric assumptions on the counterfactual distributions. Specifically, the DRM incorporates a nonparametric component that can be estimated through the method of empirical likelihood (EL), using the data from all the groups stemming from multiple interventions. Consequently, the EL-DRM framework enables inference of the counterfactual distribution functions and their functionals, facilitating direct and transparent causal inference from a distributional perspective. Numerical studies on both synthetic and real-world data validate the effectiveness of our approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Density ratio ; Distribution functions ; Functionals ; Inference</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Archer Gong Zhang</creatorcontrib><creatorcontrib>Reid, Nancy</creatorcontrib><creatorcontrib>Sun, Qiang</creatorcontrib><title>A Semiparametric Approach to Causal Inference</title><title>arXiv.org</title><description>In causal inference, an important problem is to quantify the effects of interventions or treatments. Many studies focus on estimating the mean causal effects; however, these estimands may offer limited insight since two distributions can share the same mean yet exhibit significant differences. Examining the causal effects from a distributional perspective provides a more thorough understanding. In this paper, we employ a semiparametric density ratio model (DRM) to characterize the counterfactual distributions, introducing a framework that assumes a latent structure shared by these distributions. Our model offers flexibility by avoiding strict parametric assumptions on the counterfactual distributions. Specifically, the DRM incorporates a nonparametric component that can be estimated through the method of empirical likelihood (EL), using the data from all the groups stemming from multiple interventions. Consequently, the EL-DRM framework enables inference of the counterfactual distribution functions and their functionals, facilitating direct and transparent causal inference from a distributional perspective. Numerical studies on both synthetic and real-world data validate the effectiveness of our approach.</description><subject>Density ratio</subject><subject>Distribution functions</subject><subject>Functionals</subject><subject>Inference</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdVQITs3NLEgsSsxNLSnKTFZwLCgoyk9MzlAoyVdwTiwtTsxR8MxLSy1KzUtO5WFgTUvMKU7lhdLcDMpuriHOHrpALYWlqcUl8Vn5pUV5QKl4Y0MjE0NLI1MLE2PiVAEAjPsxkA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Archer Gong Zhang</creator><creator>Reid, Nancy</creator><creator>Sun, Qiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241101</creationdate><title>A Semiparametric Approach to Causal Inference</title><author>Archer Gong Zhang ; Reid, Nancy ; Sun, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31241925843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Density ratio</topic><topic>Distribution functions</topic><topic>Functionals</topic><topic>Inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Archer Gong Zhang</creatorcontrib><creatorcontrib>Reid, Nancy</creatorcontrib><creatorcontrib>Sun, Qiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Archer Gong Zhang</au><au>Reid, Nancy</au><au>Sun, Qiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Semiparametric Approach to Causal Inference</atitle><jtitle>arXiv.org</jtitle><date>2024-11-01</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In causal inference, an important problem is to quantify the effects of interventions or treatments. Many studies focus on estimating the mean causal effects; however, these estimands may offer limited insight since two distributions can share the same mean yet exhibit significant differences. Examining the causal effects from a distributional perspective provides a more thorough understanding. In this paper, we employ a semiparametric density ratio model (DRM) to characterize the counterfactual distributions, introducing a framework that assumes a latent structure shared by these distributions. Our model offers flexibility by avoiding strict parametric assumptions on the counterfactual distributions. Specifically, the DRM incorporates a nonparametric component that can be estimated through the method of empirical likelihood (EL), using the data from all the groups stemming from multiple interventions. Consequently, the EL-DRM framework enables inference of the counterfactual distribution functions and their functionals, facilitating direct and transparent causal inference from a distributional perspective. Numerical studies on both synthetic and real-world data validate the effectiveness of our approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3124192584
source Free E- Journals
subjects Density ratio
Distribution functions
Functionals
Inference
title A Semiparametric Approach to Causal Inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Semiparametric%20Approach%20to%20Causal%20Inference&rft.jtitle=arXiv.org&rft.au=Archer%20Gong%20Zhang&rft.date=2024-11-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3124192584%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124192584&rft_id=info:pmid/&rfr_iscdi=true