Controlled Delivery of Reactive Oxygen Species by Functionalized Catalytic Plasma Coatings for Antimicrobial Applications
Increasing complications due to bacterial and viral infections require novel antimicrobial approaches. One emerging strategy is that based on catalysts able to selectively deliver reactive oxygen species (ROS) without leaching of other substances. In particular, metal oxide thin films activated by d...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Navascués Paula Flaela, Kalemi Zuber Flavia Meier, Philipp Ludovica, M Epasto Gora Michal Hanselmann, Barbara Kucher Svetlana Bordignon Enrica Ren Nun Reina Giacomo Hegemann, Dirk |
description | Increasing complications due to bacterial and viral infections require novel antimicrobial approaches. One emerging strategy is that based on catalysts able to selectively deliver reactive oxygen species (ROS) without leaching of other substances. In particular, metal oxide thin films activated by daylight can produce ROS by simply catalyzing oxygen and water molecules. This study examines plasma technology, combining deposition and oxidation processes, as well as plasma polymerization, to obtain functionalized AgOx-doped titanium oxide (TiOx) catalytic materials. The high-energy conditions in the reactive, ionized gas enable the intrinsic formation of a large number of reactive sites at defects and interfaces between the metal oxide nanostructures. Furthermore, plasma functionalization with nanoporous SiOx films (up to 100 nm thick) allows to precisely control the ROS delivery as well as unravel ROS formation mechanism at the metal oxide interface. Combining fluorescence spectroscopy and electron paramagnetic resonance, the controlled delivery of superoxide anion and singlet oxygen has been tuned based on the thickness of the nanoporous functional layer. ROS delivery by functionalized catalytic plasma coating has been related to excellent antimicrobial activity against E. coli bacteria as well as murine hepatitis virus, while avoiding cytotoxic and sensitization effects. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3124192451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124192451</sourcerecordid><originalsourceid>FETCH-proquest_journals_31241924513</originalsourceid><addsrcrecordid>eNqNjc1KA0EQhIeAYNC8Q0POgd2ZXX-OYWPwpmjuoTP2hg6d6c3MrDg-vSv4AJ6Kor6Pmpm5da5ePTTWXptFSqeqquzdvW1bNzel05CjitAHbEj4k2IB7eGN0OepwctXOVKA94E8U4JDge0YpkkDCn9PVocZpWT28CqYzgidYuZwTNBrhHXIfGYf9cAosB4GYY-_dro1Vz1KosVf3pjl9mnXPa-GqJeRUt6fdIzTS9q72jb1o23a2v2P-gEb007A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124192451</pqid></control><display><type>article</type><title>Controlled Delivery of Reactive Oxygen Species by Functionalized Catalytic Plasma Coatings for Antimicrobial Applications</title><source>Free E- Journals</source><creator>Navascués Paula ; Flaela, Kalemi ; Zuber Flavia ; Meier, Philipp ; Ludovica, M Epasto ; Gora Michal ; Hanselmann, Barbara ; Kucher Svetlana ; Bordignon Enrica ; Ren Nun ; Reina Giacomo ; Hegemann, Dirk</creator><creatorcontrib>Navascués Paula ; Flaela, Kalemi ; Zuber Flavia ; Meier, Philipp ; Ludovica, M Epasto ; Gora Michal ; Hanselmann, Barbara ; Kucher Svetlana ; Bordignon Enrica ; Ren Nun ; Reina Giacomo ; Hegemann, Dirk</creatorcontrib><description>Increasing complications due to bacterial and viral infections require novel antimicrobial approaches. One emerging strategy is that based on catalysts able to selectively deliver reactive oxygen species (ROS) without leaching of other substances. In particular, metal oxide thin films activated by daylight can produce ROS by simply catalyzing oxygen and water molecules. This study examines plasma technology, combining deposition and oxidation processes, as well as plasma polymerization, to obtain functionalized AgOx-doped titanium oxide (TiOx) catalytic materials. The high-energy conditions in the reactive, ionized gas enable the intrinsic formation of a large number of reactive sites at defects and interfaces between the metal oxide nanostructures. Furthermore, plasma functionalization with nanoporous SiOx films (up to 100 nm thick) allows to precisely control the ROS delivery as well as unravel ROS formation mechanism at the metal oxide interface. Combining fluorescence spectroscopy and electron paramagnetic resonance, the controlled delivery of superoxide anion and singlet oxygen has been tuned based on the thickness of the nanoporous functional layer. ROS delivery by functionalized catalytic plasma coating has been related to excellent antimicrobial activity against E. coli bacteria as well as murine hepatitis virus, while avoiding cytotoxic and sensitization effects.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antimicrobial agents ; Bacteria ; Coating effects ; E coli ; Electron paramagnetic resonance ; Leaching ; Metal oxides ; Oxidation ; Plasma ; Singlet oxygen ; Thick films ; Thickness ; Thin films ; Titanium oxides</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Navascués Paula</creatorcontrib><creatorcontrib>Flaela, Kalemi</creatorcontrib><creatorcontrib>Zuber Flavia</creatorcontrib><creatorcontrib>Meier, Philipp</creatorcontrib><creatorcontrib>Ludovica, M Epasto</creatorcontrib><creatorcontrib>Gora Michal</creatorcontrib><creatorcontrib>Hanselmann, Barbara</creatorcontrib><creatorcontrib>Kucher Svetlana</creatorcontrib><creatorcontrib>Bordignon Enrica</creatorcontrib><creatorcontrib>Ren Nun</creatorcontrib><creatorcontrib>Reina Giacomo</creatorcontrib><creatorcontrib>Hegemann, Dirk</creatorcontrib><title>Controlled Delivery of Reactive Oxygen Species by Functionalized Catalytic Plasma Coatings for Antimicrobial Applications</title><title>arXiv.org</title><description>Increasing complications due to bacterial and viral infections require novel antimicrobial approaches. One emerging strategy is that based on catalysts able to selectively deliver reactive oxygen species (ROS) without leaching of other substances. In particular, metal oxide thin films activated by daylight can produce ROS by simply catalyzing oxygen and water molecules. This study examines plasma technology, combining deposition and oxidation processes, as well as plasma polymerization, to obtain functionalized AgOx-doped titanium oxide (TiOx) catalytic materials. The high-energy conditions in the reactive, ionized gas enable the intrinsic formation of a large number of reactive sites at defects and interfaces between the metal oxide nanostructures. Furthermore, plasma functionalization with nanoporous SiOx films (up to 100 nm thick) allows to precisely control the ROS delivery as well as unravel ROS formation mechanism at the metal oxide interface. Combining fluorescence spectroscopy and electron paramagnetic resonance, the controlled delivery of superoxide anion and singlet oxygen has been tuned based on the thickness of the nanoporous functional layer. ROS delivery by functionalized catalytic plasma coating has been related to excellent antimicrobial activity against E. coli bacteria as well as murine hepatitis virus, while avoiding cytotoxic and sensitization effects.</description><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Coating effects</subject><subject>E coli</subject><subject>Electron paramagnetic resonance</subject><subject>Leaching</subject><subject>Metal oxides</subject><subject>Oxidation</subject><subject>Plasma</subject><subject>Singlet oxygen</subject><subject>Thick films</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Titanium oxides</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjc1KA0EQhIeAYNC8Q0POgd2ZXX-OYWPwpmjuoTP2hg6d6c3MrDg-vSv4AJ6Kor6Pmpm5da5ePTTWXptFSqeqquzdvW1bNzel05CjitAHbEj4k2IB7eGN0OepwctXOVKA94E8U4JDge0YpkkDCn9PVocZpWT28CqYzgidYuZwTNBrhHXIfGYf9cAosB4GYY-_dro1Vz1KosVf3pjl9mnXPa-GqJeRUt6fdIzTS9q72jb1o23a2v2P-gEb007A</recordid><startdate>20241102</startdate><enddate>20241102</enddate><creator>Navascués Paula</creator><creator>Flaela, Kalemi</creator><creator>Zuber Flavia</creator><creator>Meier, Philipp</creator><creator>Ludovica, M Epasto</creator><creator>Gora Michal</creator><creator>Hanselmann, Barbara</creator><creator>Kucher Svetlana</creator><creator>Bordignon Enrica</creator><creator>Ren Nun</creator><creator>Reina Giacomo</creator><creator>Hegemann, Dirk</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241102</creationdate><title>Controlled Delivery of Reactive Oxygen Species by Functionalized Catalytic Plasma Coatings for Antimicrobial Applications</title><author>Navascués Paula ; Flaela, Kalemi ; Zuber Flavia ; Meier, Philipp ; Ludovica, M Epasto ; Gora Michal ; Hanselmann, Barbara ; Kucher Svetlana ; Bordignon Enrica ; Ren Nun ; Reina Giacomo ; Hegemann, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31241924513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Coating effects</topic><topic>E coli</topic><topic>Electron paramagnetic resonance</topic><topic>Leaching</topic><topic>Metal oxides</topic><topic>Oxidation</topic><topic>Plasma</topic><topic>Singlet oxygen</topic><topic>Thick films</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Titanium oxides</topic><toplevel>online_resources</toplevel><creatorcontrib>Navascués Paula</creatorcontrib><creatorcontrib>Flaela, Kalemi</creatorcontrib><creatorcontrib>Zuber Flavia</creatorcontrib><creatorcontrib>Meier, Philipp</creatorcontrib><creatorcontrib>Ludovica, M Epasto</creatorcontrib><creatorcontrib>Gora Michal</creatorcontrib><creatorcontrib>Hanselmann, Barbara</creatorcontrib><creatorcontrib>Kucher Svetlana</creatorcontrib><creatorcontrib>Bordignon Enrica</creatorcontrib><creatorcontrib>Ren Nun</creatorcontrib><creatorcontrib>Reina Giacomo</creatorcontrib><creatorcontrib>Hegemann, Dirk</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navascués Paula</au><au>Flaela, Kalemi</au><au>Zuber Flavia</au><au>Meier, Philipp</au><au>Ludovica, M Epasto</au><au>Gora Michal</au><au>Hanselmann, Barbara</au><au>Kucher Svetlana</au><au>Bordignon Enrica</au><au>Ren Nun</au><au>Reina Giacomo</au><au>Hegemann, Dirk</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Controlled Delivery of Reactive Oxygen Species by Functionalized Catalytic Plasma Coatings for Antimicrobial Applications</atitle><jtitle>arXiv.org</jtitle><date>2024-11-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Increasing complications due to bacterial and viral infections require novel antimicrobial approaches. One emerging strategy is that based on catalysts able to selectively deliver reactive oxygen species (ROS) without leaching of other substances. In particular, metal oxide thin films activated by daylight can produce ROS by simply catalyzing oxygen and water molecules. This study examines plasma technology, combining deposition and oxidation processes, as well as plasma polymerization, to obtain functionalized AgOx-doped titanium oxide (TiOx) catalytic materials. The high-energy conditions in the reactive, ionized gas enable the intrinsic formation of a large number of reactive sites at defects and interfaces between the metal oxide nanostructures. Furthermore, plasma functionalization with nanoporous SiOx films (up to 100 nm thick) allows to precisely control the ROS delivery as well as unravel ROS formation mechanism at the metal oxide interface. Combining fluorescence spectroscopy and electron paramagnetic resonance, the controlled delivery of superoxide anion and singlet oxygen has been tuned based on the thickness of the nanoporous functional layer. ROS delivery by functionalized catalytic plasma coating has been related to excellent antimicrobial activity against E. coli bacteria as well as murine hepatitis virus, while avoiding cytotoxic and sensitization effects.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3124192451 |
source | Free E- Journals |
subjects | Antimicrobial agents Bacteria Coating effects E coli Electron paramagnetic resonance Leaching Metal oxides Oxidation Plasma Singlet oxygen Thick films Thickness Thin films Titanium oxides |
title | Controlled Delivery of Reactive Oxygen Species by Functionalized Catalytic Plasma Coatings for Antimicrobial Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Controlled%20Delivery%20of%20Reactive%20Oxygen%20Species%20by%20Functionalized%20Catalytic%20Plasma%20Coatings%20for%20Antimicrobial%20Applications&rft.jtitle=arXiv.org&rft.au=Navascu%C3%A9s%20Paula&rft.date=2024-11-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3124192451%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124192451&rft_id=info:pmid/&rfr_iscdi=true |