Cost-Gain Analysis of Sequence Selection for Nonlinearity Mitigation

We propose a low-complexity sign-dependent metric for sequence selection and study the nonlinear shaping gain achievable for a given computational cost, establishing a benchmark for future research. Small gains are obtained with feasible complexity. Higher gains are achievable in principle, but with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Civelli, Stella, Secondini, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Civelli, Stella
Secondini, Marco
description We propose a low-complexity sign-dependent metric for sequence selection and study the nonlinear shaping gain achievable for a given computational cost, establishing a benchmark for future research. Small gains are obtained with feasible complexity. Higher gains are achievable in principle, but with high complexity or a more sophisticated metric.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3124188630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124188630</sourcerecordid><originalsourceid>FETCH-proquest_journals_31241886303</originalsourceid><addsrcrecordid>eNqNjL0KwjAURoMgWLTvEHAOpElbu0r9W3TRvYSSyi0hV3PToW9vBB_A6XxwPs6CZUrrQjSlUiuWE41SSlXvVFXpjB1apCjOBjzfe-NmAuI48Lt9T9b3Ng1n-wjo-YCB39A78NYEiDO_QoSn-boNWw7Gkc1_XLPt6fhoL-IVMHUodiNOIeWp04Uqi6aptdT_vT4p8TqG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124188630</pqid></control><display><type>article</type><title>Cost-Gain Analysis of Sequence Selection for Nonlinearity Mitigation</title><source>Free E- Journals</source><creator>Civelli, Stella ; Secondini, Marco</creator><creatorcontrib>Civelli, Stella ; Secondini, Marco</creatorcontrib><description>We propose a low-complexity sign-dependent metric for sequence selection and study the nonlinear shaping gain achievable for a given computational cost, establishing a benchmark for future research. Small gains are obtained with feasible complexity. Higher gains are achievable in principle, but with high complexity or a more sophisticated metric.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Complexity ; Computing costs ; Nonlinearity</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Civelli, Stella</creatorcontrib><creatorcontrib>Secondini, Marco</creatorcontrib><title>Cost-Gain Analysis of Sequence Selection for Nonlinearity Mitigation</title><title>arXiv.org</title><description>We propose a low-complexity sign-dependent metric for sequence selection and study the nonlinear shaping gain achievable for a given computational cost, establishing a benchmark for future research. Small gains are obtained with feasible complexity. Higher gains are achievable in principle, but with high complexity or a more sophisticated metric.</description><subject>Complexity</subject><subject>Computing costs</subject><subject>Nonlinearity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjL0KwjAURoMgWLTvEHAOpElbu0r9W3TRvYSSyi0hV3PToW9vBB_A6XxwPs6CZUrrQjSlUiuWE41SSlXvVFXpjB1apCjOBjzfe-NmAuI48Lt9T9b3Ng1n-wjo-YCB39A78NYEiDO_QoSn-boNWw7Gkc1_XLPt6fhoL-IVMHUodiNOIeWp04Uqi6aptdT_vT4p8TqG</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Civelli, Stella</creator><creator>Secondini, Marco</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241104</creationdate><title>Cost-Gain Analysis of Sequence Selection for Nonlinearity Mitigation</title><author>Civelli, Stella ; Secondini, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31241886303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complexity</topic><topic>Computing costs</topic><topic>Nonlinearity</topic><toplevel>online_resources</toplevel><creatorcontrib>Civelli, Stella</creatorcontrib><creatorcontrib>Secondini, Marco</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Civelli, Stella</au><au>Secondini, Marco</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Cost-Gain Analysis of Sequence Selection for Nonlinearity Mitigation</atitle><jtitle>arXiv.org</jtitle><date>2024-11-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We propose a low-complexity sign-dependent metric for sequence selection and study the nonlinear shaping gain achievable for a given computational cost, establishing a benchmark for future research. Small gains are obtained with feasible complexity. Higher gains are achievable in principle, but with high complexity or a more sophisticated metric.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3124188630
source Free E- Journals
subjects Complexity
Computing costs
Nonlinearity
title Cost-Gain Analysis of Sequence Selection for Nonlinearity Mitigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Cost-Gain%20Analysis%20of%20Sequence%20Selection%20for%20Nonlinearity%20Mitigation&rft.jtitle=arXiv.org&rft.au=Civelli,%20Stella&rft.date=2024-11-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3124188630%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124188630&rft_id=info:pmid/&rfr_iscdi=true