Visual Anchors Are Strong Information Aggregators For Multimodal Large Language Model
In the realm of Multimodal Large Language Models (MLLMs), vision-language connector plays a crucial role to link the pre-trained vision encoders with Large Language Models (LLMs). Despite its importance, the vision-language connector has been relatively less explored. In this study, we aim to propos...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Liu, Haogeng You, Quanzeng Han, Xiaotian Liu, Yongfei Huang, Huaibo He, Ran Yang, Hongxia |
description | In the realm of Multimodal Large Language Models (MLLMs), vision-language connector plays a crucial role to link the pre-trained vision encoders with Large Language Models (LLMs). Despite its importance, the vision-language connector has been relatively less explored. In this study, we aim to propose a strong vision-language connector that enables MLLMs to achieve high accuracy while maintain low computation cost. We first reveal the existence of the visual anchors in Vision Transformer and propose a cost-effective search algorithm to extract them. Building on these findings, we introduce the Anchor Former (AcFormer), a novel vision-language connector designed to leverage the rich prior knowledge obtained from these visual anchors during pretraining, guiding the aggregation of information. Through extensive experimentation, we demonstrate that the proposed method significantly reduces computational costs by nearly two-thirds compared with baseline, while simultaneously outperforming baseline methods. This highlights the effectiveness and efficiency of AcFormer. Codes are available at https://github.com/liuhaogeng/Anchor-Former. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3124179802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124179802</sourcerecordid><originalsourceid>FETCH-proquest_journals_31241798023</originalsourceid><addsrcrecordid>eNqNi8sKwjAURIMgWLT_EHBdSJPW1mURi4KufGxLsGlsSXP1Jvl_K_gBbmYGzpkZibgQaVJmnC9I7NzAGOObgue5iMjt3rsgDa3s4wnoaIWKXjyC1fRoO8BR-h4srbRGpaX_KjUgPQfj-xHa6XmSqNWUVgc5jTO0yqzIvJPGqfjXS7Ku99fdIXkhvINyvhkgoJ1QI1KepcW2ZFz8Z30Am5lAdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124179802</pqid></control><display><type>article</type><title>Visual Anchors Are Strong Information Aggregators For Multimodal Large Language Model</title><source>Free E- Journals</source><creator>Liu, Haogeng ; You, Quanzeng ; Han, Xiaotian ; Liu, Yongfei ; Huang, Huaibo ; He, Ran ; Yang, Hongxia</creator><creatorcontrib>Liu, Haogeng ; You, Quanzeng ; Han, Xiaotian ; Liu, Yongfei ; Huang, Huaibo ; He, Ran ; Yang, Hongxia</creatorcontrib><description>In the realm of Multimodal Large Language Models (MLLMs), vision-language connector plays a crucial role to link the pre-trained vision encoders with Large Language Models (LLMs). Despite its importance, the vision-language connector has been relatively less explored. In this study, we aim to propose a strong vision-language connector that enables MLLMs to achieve high accuracy while maintain low computation cost. We first reveal the existence of the visual anchors in Vision Transformer and propose a cost-effective search algorithm to extract them. Building on these findings, we introduce the Anchor Former (AcFormer), a novel vision-language connector designed to leverage the rich prior knowledge obtained from these visual anchors during pretraining, guiding the aggregation of information. Through extensive experimentation, we demonstrate that the proposed method significantly reduces computational costs by nearly two-thirds compared with baseline, while simultaneously outperforming baseline methods. This highlights the effectiveness and efficiency of AcFormer. Codes are available at https://github.com/liuhaogeng/Anchor-Former.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computing costs ; Effectiveness ; Language ; Large language models ; Search algorithms ; Vision</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Liu, Haogeng</creatorcontrib><creatorcontrib>You, Quanzeng</creatorcontrib><creatorcontrib>Han, Xiaotian</creatorcontrib><creatorcontrib>Liu, Yongfei</creatorcontrib><creatorcontrib>Huang, Huaibo</creatorcontrib><creatorcontrib>He, Ran</creatorcontrib><creatorcontrib>Yang, Hongxia</creatorcontrib><title>Visual Anchors Are Strong Information Aggregators For Multimodal Large Language Model</title><title>arXiv.org</title><description>In the realm of Multimodal Large Language Models (MLLMs), vision-language connector plays a crucial role to link the pre-trained vision encoders with Large Language Models (LLMs). Despite its importance, the vision-language connector has been relatively less explored. In this study, we aim to propose a strong vision-language connector that enables MLLMs to achieve high accuracy while maintain low computation cost. We first reveal the existence of the visual anchors in Vision Transformer and propose a cost-effective search algorithm to extract them. Building on these findings, we introduce the Anchor Former (AcFormer), a novel vision-language connector designed to leverage the rich prior knowledge obtained from these visual anchors during pretraining, guiding the aggregation of information. Through extensive experimentation, we demonstrate that the proposed method significantly reduces computational costs by nearly two-thirds compared with baseline, while simultaneously outperforming baseline methods. This highlights the effectiveness and efficiency of AcFormer. Codes are available at https://github.com/liuhaogeng/Anchor-Former.</description><subject>Computing costs</subject><subject>Effectiveness</subject><subject>Language</subject><subject>Large language models</subject><subject>Search algorithms</subject><subject>Vision</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKwjAURIMgWLT_EHBdSJPW1mURi4KufGxLsGlsSXP1Jvl_K_gBbmYGzpkZibgQaVJmnC9I7NzAGOObgue5iMjt3rsgDa3s4wnoaIWKXjyC1fRoO8BR-h4srbRGpaX_KjUgPQfj-xHa6XmSqNWUVgc5jTO0yqzIvJPGqfjXS7Ku99fdIXkhvINyvhkgoJ1QI1KepcW2ZFz8Z30Am5lAdg</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Liu, Haogeng</creator><creator>You, Quanzeng</creator><creator>Han, Xiaotian</creator><creator>Liu, Yongfei</creator><creator>Huang, Huaibo</creator><creator>He, Ran</creator><creator>Yang, Hongxia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241104</creationdate><title>Visual Anchors Are Strong Information Aggregators For Multimodal Large Language Model</title><author>Liu, Haogeng ; You, Quanzeng ; Han, Xiaotian ; Liu, Yongfei ; Huang, Huaibo ; He, Ran ; Yang, Hongxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31241798023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computing costs</topic><topic>Effectiveness</topic><topic>Language</topic><topic>Large language models</topic><topic>Search algorithms</topic><topic>Vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haogeng</creatorcontrib><creatorcontrib>You, Quanzeng</creatorcontrib><creatorcontrib>Han, Xiaotian</creatorcontrib><creatorcontrib>Liu, Yongfei</creatorcontrib><creatorcontrib>Huang, Huaibo</creatorcontrib><creatorcontrib>He, Ran</creatorcontrib><creatorcontrib>Yang, Hongxia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haogeng</au><au>You, Quanzeng</au><au>Han, Xiaotian</au><au>Liu, Yongfei</au><au>Huang, Huaibo</au><au>He, Ran</au><au>Yang, Hongxia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Visual Anchors Are Strong Information Aggregators For Multimodal Large Language Model</atitle><jtitle>arXiv.org</jtitle><date>2024-11-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In the realm of Multimodal Large Language Models (MLLMs), vision-language connector plays a crucial role to link the pre-trained vision encoders with Large Language Models (LLMs). Despite its importance, the vision-language connector has been relatively less explored. In this study, we aim to propose a strong vision-language connector that enables MLLMs to achieve high accuracy while maintain low computation cost. We first reveal the existence of the visual anchors in Vision Transformer and propose a cost-effective search algorithm to extract them. Building on these findings, we introduce the Anchor Former (AcFormer), a novel vision-language connector designed to leverage the rich prior knowledge obtained from these visual anchors during pretraining, guiding the aggregation of information. Through extensive experimentation, we demonstrate that the proposed method significantly reduces computational costs by nearly two-thirds compared with baseline, while simultaneously outperforming baseline methods. This highlights the effectiveness and efficiency of AcFormer. Codes are available at https://github.com/liuhaogeng/Anchor-Former.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3124179802 |
source | Free E- Journals |
subjects | Computing costs Effectiveness Language Large language models Search algorithms Vision |
title | Visual Anchors Are Strong Information Aggregators For Multimodal Large Language Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Visual%20Anchors%20Are%20Strong%20Information%20Aggregators%20For%20Multimodal%20Large%20Language%20Model&rft.jtitle=arXiv.org&rft.au=Liu,%20Haogeng&rft.date=2024-11-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3124179802%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124179802&rft_id=info:pmid/&rfr_iscdi=true |