Visual Anchors Are Strong Information Aggregators For Multimodal Large Language Model

In the realm of Multimodal Large Language Models (MLLMs), vision-language connector plays a crucial role to link the pre-trained vision encoders with Large Language Models (LLMs). Despite its importance, the vision-language connector has been relatively less explored. In this study, we aim to propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Liu, Haogeng, You, Quanzeng, Han, Xiaotian, Liu, Yongfei, Huang, Huaibo, He, Ran, Yang, Hongxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Haogeng
You, Quanzeng
Han, Xiaotian
Liu, Yongfei
Huang, Huaibo
He, Ran
Yang, Hongxia
description In the realm of Multimodal Large Language Models (MLLMs), vision-language connector plays a crucial role to link the pre-trained vision encoders with Large Language Models (LLMs). Despite its importance, the vision-language connector has been relatively less explored. In this study, we aim to propose a strong vision-language connector that enables MLLMs to achieve high accuracy while maintain low computation cost. We first reveal the existence of the visual anchors in Vision Transformer and propose a cost-effective search algorithm to extract them. Building on these findings, we introduce the Anchor Former (AcFormer), a novel vision-language connector designed to leverage the rich prior knowledge obtained from these visual anchors during pretraining, guiding the aggregation of information. Through extensive experimentation, we demonstrate that the proposed method significantly reduces computational costs by nearly two-thirds compared with baseline, while simultaneously outperforming baseline methods. This highlights the effectiveness and efficiency of AcFormer. Codes are available at https://github.com/liuhaogeng/Anchor-Former.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3124179802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124179802</sourcerecordid><originalsourceid>FETCH-proquest_journals_31241798023</originalsourceid><addsrcrecordid>eNqNi8sKwjAURIMgWLT_EHBdSJPW1mURi4KufGxLsGlsSXP1Jvl_K_gBbmYGzpkZibgQaVJmnC9I7NzAGOObgue5iMjt3rsgDa3s4wnoaIWKXjyC1fRoO8BR-h4srbRGpaX_KjUgPQfj-xHa6XmSqNWUVgc5jTO0yqzIvJPGqfjXS7Ku99fdIXkhvINyvhkgoJ1QI1KepcW2ZFz8Z30Am5lAdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124179802</pqid></control><display><type>article</type><title>Visual Anchors Are Strong Information Aggregators For Multimodal Large Language Model</title><source>Free E- Journals</source><creator>Liu, Haogeng ; You, Quanzeng ; Han, Xiaotian ; Liu, Yongfei ; Huang, Huaibo ; He, Ran ; Yang, Hongxia</creator><creatorcontrib>Liu, Haogeng ; You, Quanzeng ; Han, Xiaotian ; Liu, Yongfei ; Huang, Huaibo ; He, Ran ; Yang, Hongxia</creatorcontrib><description>In the realm of Multimodal Large Language Models (MLLMs), vision-language connector plays a crucial role to link the pre-trained vision encoders with Large Language Models (LLMs). Despite its importance, the vision-language connector has been relatively less explored. In this study, we aim to propose a strong vision-language connector that enables MLLMs to achieve high accuracy while maintain low computation cost. We first reveal the existence of the visual anchors in Vision Transformer and propose a cost-effective search algorithm to extract them. Building on these findings, we introduce the Anchor Former (AcFormer), a novel vision-language connector designed to leverage the rich prior knowledge obtained from these visual anchors during pretraining, guiding the aggregation of information. Through extensive experimentation, we demonstrate that the proposed method significantly reduces computational costs by nearly two-thirds compared with baseline, while simultaneously outperforming baseline methods. This highlights the effectiveness and efficiency of AcFormer. Codes are available at https://github.com/liuhaogeng/Anchor-Former.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computing costs ; Effectiveness ; Language ; Large language models ; Search algorithms ; Vision</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Liu, Haogeng</creatorcontrib><creatorcontrib>You, Quanzeng</creatorcontrib><creatorcontrib>Han, Xiaotian</creatorcontrib><creatorcontrib>Liu, Yongfei</creatorcontrib><creatorcontrib>Huang, Huaibo</creatorcontrib><creatorcontrib>He, Ran</creatorcontrib><creatorcontrib>Yang, Hongxia</creatorcontrib><title>Visual Anchors Are Strong Information Aggregators For Multimodal Large Language Model</title><title>arXiv.org</title><description>In the realm of Multimodal Large Language Models (MLLMs), vision-language connector plays a crucial role to link the pre-trained vision encoders with Large Language Models (LLMs). Despite its importance, the vision-language connector has been relatively less explored. In this study, we aim to propose a strong vision-language connector that enables MLLMs to achieve high accuracy while maintain low computation cost. We first reveal the existence of the visual anchors in Vision Transformer and propose a cost-effective search algorithm to extract them. Building on these findings, we introduce the Anchor Former (AcFormer), a novel vision-language connector designed to leverage the rich prior knowledge obtained from these visual anchors during pretraining, guiding the aggregation of information. Through extensive experimentation, we demonstrate that the proposed method significantly reduces computational costs by nearly two-thirds compared with baseline, while simultaneously outperforming baseline methods. This highlights the effectiveness and efficiency of AcFormer. Codes are available at https://github.com/liuhaogeng/Anchor-Former.</description><subject>Computing costs</subject><subject>Effectiveness</subject><subject>Language</subject><subject>Large language models</subject><subject>Search algorithms</subject><subject>Vision</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKwjAURIMgWLT_EHBdSJPW1mURi4KufGxLsGlsSXP1Jvl_K_gBbmYGzpkZibgQaVJmnC9I7NzAGOObgue5iMjt3rsgDa3s4wnoaIWKXjyC1fRoO8BR-h4srbRGpaX_KjUgPQfj-xHa6XmSqNWUVgc5jTO0yqzIvJPGqfjXS7Ku99fdIXkhvINyvhkgoJ1QI1KepcW2ZFz8Z30Am5lAdg</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Liu, Haogeng</creator><creator>You, Quanzeng</creator><creator>Han, Xiaotian</creator><creator>Liu, Yongfei</creator><creator>Huang, Huaibo</creator><creator>He, Ran</creator><creator>Yang, Hongxia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241104</creationdate><title>Visual Anchors Are Strong Information Aggregators For Multimodal Large Language Model</title><author>Liu, Haogeng ; You, Quanzeng ; Han, Xiaotian ; Liu, Yongfei ; Huang, Huaibo ; He, Ran ; Yang, Hongxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31241798023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computing costs</topic><topic>Effectiveness</topic><topic>Language</topic><topic>Large language models</topic><topic>Search algorithms</topic><topic>Vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haogeng</creatorcontrib><creatorcontrib>You, Quanzeng</creatorcontrib><creatorcontrib>Han, Xiaotian</creatorcontrib><creatorcontrib>Liu, Yongfei</creatorcontrib><creatorcontrib>Huang, Huaibo</creatorcontrib><creatorcontrib>He, Ran</creatorcontrib><creatorcontrib>Yang, Hongxia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haogeng</au><au>You, Quanzeng</au><au>Han, Xiaotian</au><au>Liu, Yongfei</au><au>Huang, Huaibo</au><au>He, Ran</au><au>Yang, Hongxia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Visual Anchors Are Strong Information Aggregators For Multimodal Large Language Model</atitle><jtitle>arXiv.org</jtitle><date>2024-11-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In the realm of Multimodal Large Language Models (MLLMs), vision-language connector plays a crucial role to link the pre-trained vision encoders with Large Language Models (LLMs). Despite its importance, the vision-language connector has been relatively less explored. In this study, we aim to propose a strong vision-language connector that enables MLLMs to achieve high accuracy while maintain low computation cost. We first reveal the existence of the visual anchors in Vision Transformer and propose a cost-effective search algorithm to extract them. Building on these findings, we introduce the Anchor Former (AcFormer), a novel vision-language connector designed to leverage the rich prior knowledge obtained from these visual anchors during pretraining, guiding the aggregation of information. Through extensive experimentation, we demonstrate that the proposed method significantly reduces computational costs by nearly two-thirds compared with baseline, while simultaneously outperforming baseline methods. This highlights the effectiveness and efficiency of AcFormer. Codes are available at https://github.com/liuhaogeng/Anchor-Former.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3124179802
source Free E- Journals
subjects Computing costs
Effectiveness
Language
Large language models
Search algorithms
Vision
title Visual Anchors Are Strong Information Aggregators For Multimodal Large Language Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Visual%20Anchors%20Are%20Strong%20Information%20Aggregators%20For%20Multimodal%20Large%20Language%20Model&rft.jtitle=arXiv.org&rft.au=Liu,%20Haogeng&rft.date=2024-11-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3124179802%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124179802&rft_id=info:pmid/&rfr_iscdi=true