Leading edge vortex dynamics on finite aspect ratio swept wings exhibiting large amplitude oscillations
Stall flutter, a fluid–structural interaction driven by dynamic stall, has primarily been studied as a two-dimensional flow phenomenon. However, recent investigations suggest that wing sweep, which induces spanwise flow and cross-flow instability, significantly influences the leading-edge vortex (LE...
Gespeichert in:
Veröffentlicht in: | CEAS aeronautical journal 2024, Vol.15 (4), p.999-1014 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1014 |
---|---|
container_issue | 4 |
container_start_page | 999 |
container_title | CEAS aeronautical journal |
container_volume | 15 |
creator | Fagley, Casey Jirasek, Adam Seidel, Jürgen |
description | Stall flutter, a fluid–structural interaction driven by dynamic stall, has primarily been studied as a two-dimensional flow phenomenon. However, recent investigations suggest that wing sweep, which induces spanwise flow and cross-flow instability, significantly influences the leading-edge vortex (LEV) formation. This paper investigates the effects of wing sweep on stall flutter instabilities using a cyber-physical approach, combining experiments and high-fidelity simulations. Results reveal that increasing sweep reduces flutter amplitude and delays instability onset by weakening the LEV. The spanwise flow induced by sweep promotes LEV shedding and breakdown, leading to a stabilizing effect. Prescribed and responding motions exhibit similar dynamics, with minor differences attributed to nonlinearities in the fluid–structure interaction. Detailed analysis of the flow field and unsteady aerodynamic forces provides insights into the complex interplay between sweep, LEV development, and aeroelastic stability. |
doi_str_mv | 10.1007/s13272-024-00751-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3124100963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124100963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1159-9631d97fe942c63749a5b696eb486e8ba5b106745cba524c1ad0c8dee30430103</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOOb-gFcBr6v5atpcyvBjMPBGr0OantaMrq1J5rZ_b2ZF78xNzoH3eQ88CF1TcksJKe4C5axgGWEiS2tOM3WGZrSUKstzRc5_55JdokUIG5KeJFzkYobaNZja9S2GugX8OfgIB1wfe7N1NuChx43rXQRswgg2Ym-iG3DYwxjxPmEBw-HdVS6eKjrjU4fZjp2LuxrwEKzruhPRhyt00ZguwOLnn6O3x4fX5XO2fnlaLe_XmaU0V5mSnNaqaEAJZiUvhDJ5JZWESpQSyiptlMhC5DaNTFhqamLLGoATwQklfI5upt7RDx87CFFvhp3v00nNKRPJVzqRUmxKWT-E4KHRo3db44-aEn1yqienOjnV3061ShCfoJDCfQv-r_of6gsKzHpM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124100963</pqid></control><display><type>article</type><title>Leading edge vortex dynamics on finite aspect ratio swept wings exhibiting large amplitude oscillations</title><source>Springer Nature - Complete Springer Journals</source><creator>Fagley, Casey ; Jirasek, Adam ; Seidel, Jürgen</creator><creatorcontrib>Fagley, Casey ; Jirasek, Adam ; Seidel, Jürgen</creatorcontrib><description>Stall flutter, a fluid–structural interaction driven by dynamic stall, has primarily been studied as a two-dimensional flow phenomenon. However, recent investigations suggest that wing sweep, which induces spanwise flow and cross-flow instability, significantly influences the leading-edge vortex (LEV) formation. This paper investigates the effects of wing sweep on stall flutter instabilities using a cyber-physical approach, combining experiments and high-fidelity simulations. Results reveal that increasing sweep reduces flutter amplitude and delays instability onset by weakening the LEV. The spanwise flow induced by sweep promotes LEV shedding and breakdown, leading to a stabilizing effect. Prescribed and responding motions exhibit similar dynamics, with minor differences attributed to nonlinearities in the fluid–structure interaction. Detailed analysis of the flow field and unsteady aerodynamic forces provides insights into the complex interplay between sweep, LEV development, and aeroelastic stability.</description><identifier>ISSN: 1869-5582</identifier><identifier>EISSN: 1869-5590</identifier><identifier>DOI: 10.1007/s13272-024-00751-9</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aerodynamic forces ; Aerodynamic stability ; Aeroelastic stability ; Aerospace Technology and Astronautics ; Amplitudes ; Aspect ratio ; Cross flow ; Dynamic structural analysis ; Engineering ; Fluid dynamics ; Fluid flow ; Fluid-structure interaction ; Flutter ; Leading edges ; Motion stability ; Original Paper ; Stalling ; Swept wings ; Two dimensional flow ; Unsteady aerodynamics ; Vibration</subject><ispartof>CEAS aeronautical journal, 2024, Vol.15 (4), p.999-1014</ispartof><rights>Deutsches Zentrum für Luft- und Raumfahrt e.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1159-9631d97fe942c63749a5b696eb486e8ba5b106745cba524c1ad0c8dee30430103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13272-024-00751-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13272-024-00751-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Fagley, Casey</creatorcontrib><creatorcontrib>Jirasek, Adam</creatorcontrib><creatorcontrib>Seidel, Jürgen</creatorcontrib><title>Leading edge vortex dynamics on finite aspect ratio swept wings exhibiting large amplitude oscillations</title><title>CEAS aeronautical journal</title><addtitle>CEAS Aeronaut J</addtitle><description>Stall flutter, a fluid–structural interaction driven by dynamic stall, has primarily been studied as a two-dimensional flow phenomenon. However, recent investigations suggest that wing sweep, which induces spanwise flow and cross-flow instability, significantly influences the leading-edge vortex (LEV) formation. This paper investigates the effects of wing sweep on stall flutter instabilities using a cyber-physical approach, combining experiments and high-fidelity simulations. Results reveal that increasing sweep reduces flutter amplitude and delays instability onset by weakening the LEV. The spanwise flow induced by sweep promotes LEV shedding and breakdown, leading to a stabilizing effect. Prescribed and responding motions exhibit similar dynamics, with minor differences attributed to nonlinearities in the fluid–structure interaction. Detailed analysis of the flow field and unsteady aerodynamic forces provides insights into the complex interplay between sweep, LEV development, and aeroelastic stability.</description><subject>Aerodynamic forces</subject><subject>Aerodynamic stability</subject><subject>Aeroelastic stability</subject><subject>Aerospace Technology and Astronautics</subject><subject>Amplitudes</subject><subject>Aspect ratio</subject><subject>Cross flow</subject><subject>Dynamic structural analysis</subject><subject>Engineering</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>Flutter</subject><subject>Leading edges</subject><subject>Motion stability</subject><subject>Original Paper</subject><subject>Stalling</subject><subject>Swept wings</subject><subject>Two dimensional flow</subject><subject>Unsteady aerodynamics</subject><subject>Vibration</subject><issn>1869-5582</issn><issn>1869-5590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOOb-gFcBr6v5atpcyvBjMPBGr0OantaMrq1J5rZ_b2ZF78xNzoH3eQ88CF1TcksJKe4C5axgGWEiS2tOM3WGZrSUKstzRc5_55JdokUIG5KeJFzkYobaNZja9S2GugX8OfgIB1wfe7N1NuChx43rXQRswgg2Ym-iG3DYwxjxPmEBw-HdVS6eKjrjU4fZjp2LuxrwEKzruhPRhyt00ZguwOLnn6O3x4fX5XO2fnlaLe_XmaU0V5mSnNaqaEAJZiUvhDJ5JZWESpQSyiptlMhC5DaNTFhqamLLGoATwQklfI5upt7RDx87CFFvhp3v00nNKRPJVzqRUmxKWT-E4KHRo3db44-aEn1yqienOjnV3061ShCfoJDCfQv-r_of6gsKzHpM</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Fagley, Casey</creator><creator>Jirasek, Adam</creator><creator>Seidel, Jürgen</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Leading edge vortex dynamics on finite aspect ratio swept wings exhibiting large amplitude oscillations</title><author>Fagley, Casey ; Jirasek, Adam ; Seidel, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1159-9631d97fe942c63749a5b696eb486e8ba5b106745cba524c1ad0c8dee30430103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerodynamic forces</topic><topic>Aerodynamic stability</topic><topic>Aeroelastic stability</topic><topic>Aerospace Technology and Astronautics</topic><topic>Amplitudes</topic><topic>Aspect ratio</topic><topic>Cross flow</topic><topic>Dynamic structural analysis</topic><topic>Engineering</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>Flutter</topic><topic>Leading edges</topic><topic>Motion stability</topic><topic>Original Paper</topic><topic>Stalling</topic><topic>Swept wings</topic><topic>Two dimensional flow</topic><topic>Unsteady aerodynamics</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Fagley, Casey</creatorcontrib><creatorcontrib>Jirasek, Adam</creatorcontrib><creatorcontrib>Seidel, Jürgen</creatorcontrib><collection>CrossRef</collection><jtitle>CEAS aeronautical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fagley, Casey</au><au>Jirasek, Adam</au><au>Seidel, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leading edge vortex dynamics on finite aspect ratio swept wings exhibiting large amplitude oscillations</atitle><jtitle>CEAS aeronautical journal</jtitle><stitle>CEAS Aeronaut J</stitle><date>2024</date><risdate>2024</risdate><volume>15</volume><issue>4</issue><spage>999</spage><epage>1014</epage><pages>999-1014</pages><issn>1869-5582</issn><eissn>1869-5590</eissn><abstract>Stall flutter, a fluid–structural interaction driven by dynamic stall, has primarily been studied as a two-dimensional flow phenomenon. However, recent investigations suggest that wing sweep, which induces spanwise flow and cross-flow instability, significantly influences the leading-edge vortex (LEV) formation. This paper investigates the effects of wing sweep on stall flutter instabilities using a cyber-physical approach, combining experiments and high-fidelity simulations. Results reveal that increasing sweep reduces flutter amplitude and delays instability onset by weakening the LEV. The spanwise flow induced by sweep promotes LEV shedding and breakdown, leading to a stabilizing effect. Prescribed and responding motions exhibit similar dynamics, with minor differences attributed to nonlinearities in the fluid–structure interaction. Detailed analysis of the flow field and unsteady aerodynamic forces provides insights into the complex interplay between sweep, LEV development, and aeroelastic stability.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13272-024-00751-9</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-5582 |
ispartof | CEAS aeronautical journal, 2024, Vol.15 (4), p.999-1014 |
issn | 1869-5582 1869-5590 |
language | eng |
recordid | cdi_proquest_journals_3124100963 |
source | Springer Nature - Complete Springer Journals |
subjects | Aerodynamic forces Aerodynamic stability Aeroelastic stability Aerospace Technology and Astronautics Amplitudes Aspect ratio Cross flow Dynamic structural analysis Engineering Fluid dynamics Fluid flow Fluid-structure interaction Flutter Leading edges Motion stability Original Paper Stalling Swept wings Two dimensional flow Unsteady aerodynamics Vibration |
title | Leading edge vortex dynamics on finite aspect ratio swept wings exhibiting large amplitude oscillations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A00%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leading%20edge%20vortex%20dynamics%20on%20finite%20aspect%20ratio%20swept%20wings%20exhibiting%20large%20amplitude%20oscillations&rft.jtitle=CEAS%20aeronautical%20journal&rft.au=Fagley,%20Casey&rft.date=2024&rft.volume=15&rft.issue=4&rft.spage=999&rft.epage=1014&rft.pages=999-1014&rft.issn=1869-5582&rft.eissn=1869-5590&rft_id=info:doi/10.1007/s13272-024-00751-9&rft_dat=%3Cproquest_cross%3E3124100963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124100963&rft_id=info:pmid/&rfr_iscdi=true |