Leading edge vortex dynamics on finite aspect ratio swept wings exhibiting large amplitude oscillations

Stall flutter, a fluid–structural interaction driven by dynamic stall, has primarily been studied as a two-dimensional flow phenomenon. However, recent investigations suggest that wing sweep, which induces spanwise flow and cross-flow instability, significantly influences the leading-edge vortex (LE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CEAS aeronautical journal 2024, Vol.15 (4), p.999-1014
Hauptverfasser: Fagley, Casey, Jirasek, Adam, Seidel, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1014
container_issue 4
container_start_page 999
container_title CEAS aeronautical journal
container_volume 15
creator Fagley, Casey
Jirasek, Adam
Seidel, Jürgen
description Stall flutter, a fluid–structural interaction driven by dynamic stall, has primarily been studied as a two-dimensional flow phenomenon. However, recent investigations suggest that wing sweep, which induces spanwise flow and cross-flow instability, significantly influences the leading-edge vortex (LEV) formation. This paper investigates the effects of wing sweep on stall flutter instabilities using a cyber-physical approach, combining experiments and high-fidelity simulations. Results reveal that increasing sweep reduces flutter amplitude and delays instability onset by weakening the LEV. The spanwise flow induced by sweep promotes LEV shedding and breakdown, leading to a stabilizing effect. Prescribed and responding motions exhibit similar dynamics, with minor differences attributed to nonlinearities in the fluid–structure interaction. Detailed analysis of the flow field and unsteady aerodynamic forces provides insights into the complex interplay between sweep, LEV development, and aeroelastic stability.
doi_str_mv 10.1007/s13272-024-00751-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3124100963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124100963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1159-9631d97fe942c63749a5b696eb486e8ba5b106745cba524c1ad0c8dee30430103</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOOb-gFcBr6v5atpcyvBjMPBGr0OantaMrq1J5rZ_b2ZF78xNzoH3eQ88CF1TcksJKe4C5axgGWEiS2tOM3WGZrSUKstzRc5_55JdokUIG5KeJFzkYobaNZja9S2GugX8OfgIB1wfe7N1NuChx43rXQRswgg2Ym-iG3DYwxjxPmEBw-HdVS6eKjrjU4fZjp2LuxrwEKzruhPRhyt00ZguwOLnn6O3x4fX5XO2fnlaLe_XmaU0V5mSnNaqaEAJZiUvhDJ5JZWESpQSyiptlMhC5DaNTFhqamLLGoATwQklfI5upt7RDx87CFFvhp3v00nNKRPJVzqRUmxKWT-E4KHRo3db44-aEn1yqienOjnV3061ShCfoJDCfQv-r_of6gsKzHpM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124100963</pqid></control><display><type>article</type><title>Leading edge vortex dynamics on finite aspect ratio swept wings exhibiting large amplitude oscillations</title><source>Springer Nature - Complete Springer Journals</source><creator>Fagley, Casey ; Jirasek, Adam ; Seidel, Jürgen</creator><creatorcontrib>Fagley, Casey ; Jirasek, Adam ; Seidel, Jürgen</creatorcontrib><description>Stall flutter, a fluid–structural interaction driven by dynamic stall, has primarily been studied as a two-dimensional flow phenomenon. However, recent investigations suggest that wing sweep, which induces spanwise flow and cross-flow instability, significantly influences the leading-edge vortex (LEV) formation. This paper investigates the effects of wing sweep on stall flutter instabilities using a cyber-physical approach, combining experiments and high-fidelity simulations. Results reveal that increasing sweep reduces flutter amplitude and delays instability onset by weakening the LEV. The spanwise flow induced by sweep promotes LEV shedding and breakdown, leading to a stabilizing effect. Prescribed and responding motions exhibit similar dynamics, with minor differences attributed to nonlinearities in the fluid–structure interaction. Detailed analysis of the flow field and unsteady aerodynamic forces provides insights into the complex interplay between sweep, LEV development, and aeroelastic stability.</description><identifier>ISSN: 1869-5582</identifier><identifier>EISSN: 1869-5590</identifier><identifier>DOI: 10.1007/s13272-024-00751-9</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aerodynamic forces ; Aerodynamic stability ; Aeroelastic stability ; Aerospace Technology and Astronautics ; Amplitudes ; Aspect ratio ; Cross flow ; Dynamic structural analysis ; Engineering ; Fluid dynamics ; Fluid flow ; Fluid-structure interaction ; Flutter ; Leading edges ; Motion stability ; Original Paper ; Stalling ; Swept wings ; Two dimensional flow ; Unsteady aerodynamics ; Vibration</subject><ispartof>CEAS aeronautical journal, 2024, Vol.15 (4), p.999-1014</ispartof><rights>Deutsches Zentrum für Luft- und Raumfahrt e.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1159-9631d97fe942c63749a5b696eb486e8ba5b106745cba524c1ad0c8dee30430103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13272-024-00751-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13272-024-00751-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Fagley, Casey</creatorcontrib><creatorcontrib>Jirasek, Adam</creatorcontrib><creatorcontrib>Seidel, Jürgen</creatorcontrib><title>Leading edge vortex dynamics on finite aspect ratio swept wings exhibiting large amplitude oscillations</title><title>CEAS aeronautical journal</title><addtitle>CEAS Aeronaut J</addtitle><description>Stall flutter, a fluid–structural interaction driven by dynamic stall, has primarily been studied as a two-dimensional flow phenomenon. However, recent investigations suggest that wing sweep, which induces spanwise flow and cross-flow instability, significantly influences the leading-edge vortex (LEV) formation. This paper investigates the effects of wing sweep on stall flutter instabilities using a cyber-physical approach, combining experiments and high-fidelity simulations. Results reveal that increasing sweep reduces flutter amplitude and delays instability onset by weakening the LEV. The spanwise flow induced by sweep promotes LEV shedding and breakdown, leading to a stabilizing effect. Prescribed and responding motions exhibit similar dynamics, with minor differences attributed to nonlinearities in the fluid–structure interaction. Detailed analysis of the flow field and unsteady aerodynamic forces provides insights into the complex interplay between sweep, LEV development, and aeroelastic stability.</description><subject>Aerodynamic forces</subject><subject>Aerodynamic stability</subject><subject>Aeroelastic stability</subject><subject>Aerospace Technology and Astronautics</subject><subject>Amplitudes</subject><subject>Aspect ratio</subject><subject>Cross flow</subject><subject>Dynamic structural analysis</subject><subject>Engineering</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>Flutter</subject><subject>Leading edges</subject><subject>Motion stability</subject><subject>Original Paper</subject><subject>Stalling</subject><subject>Swept wings</subject><subject>Two dimensional flow</subject><subject>Unsteady aerodynamics</subject><subject>Vibration</subject><issn>1869-5582</issn><issn>1869-5590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOOb-gFcBr6v5atpcyvBjMPBGr0OantaMrq1J5rZ_b2ZF78xNzoH3eQ88CF1TcksJKe4C5axgGWEiS2tOM3WGZrSUKstzRc5_55JdokUIG5KeJFzkYobaNZja9S2GugX8OfgIB1wfe7N1NuChx43rXQRswgg2Ym-iG3DYwxjxPmEBw-HdVS6eKjrjU4fZjp2LuxrwEKzruhPRhyt00ZguwOLnn6O3x4fX5XO2fnlaLe_XmaU0V5mSnNaqaEAJZiUvhDJ5JZWESpQSyiptlMhC5DaNTFhqamLLGoATwQklfI5upt7RDx87CFFvhp3v00nNKRPJVzqRUmxKWT-E4KHRo3db44-aEn1yqienOjnV3061ShCfoJDCfQv-r_of6gsKzHpM</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Fagley, Casey</creator><creator>Jirasek, Adam</creator><creator>Seidel, Jürgen</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Leading edge vortex dynamics on finite aspect ratio swept wings exhibiting large amplitude oscillations</title><author>Fagley, Casey ; Jirasek, Adam ; Seidel, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1159-9631d97fe942c63749a5b696eb486e8ba5b106745cba524c1ad0c8dee30430103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerodynamic forces</topic><topic>Aerodynamic stability</topic><topic>Aeroelastic stability</topic><topic>Aerospace Technology and Astronautics</topic><topic>Amplitudes</topic><topic>Aspect ratio</topic><topic>Cross flow</topic><topic>Dynamic structural analysis</topic><topic>Engineering</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>Flutter</topic><topic>Leading edges</topic><topic>Motion stability</topic><topic>Original Paper</topic><topic>Stalling</topic><topic>Swept wings</topic><topic>Two dimensional flow</topic><topic>Unsteady aerodynamics</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Fagley, Casey</creatorcontrib><creatorcontrib>Jirasek, Adam</creatorcontrib><creatorcontrib>Seidel, Jürgen</creatorcontrib><collection>CrossRef</collection><jtitle>CEAS aeronautical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fagley, Casey</au><au>Jirasek, Adam</au><au>Seidel, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leading edge vortex dynamics on finite aspect ratio swept wings exhibiting large amplitude oscillations</atitle><jtitle>CEAS aeronautical journal</jtitle><stitle>CEAS Aeronaut J</stitle><date>2024</date><risdate>2024</risdate><volume>15</volume><issue>4</issue><spage>999</spage><epage>1014</epage><pages>999-1014</pages><issn>1869-5582</issn><eissn>1869-5590</eissn><abstract>Stall flutter, a fluid–structural interaction driven by dynamic stall, has primarily been studied as a two-dimensional flow phenomenon. However, recent investigations suggest that wing sweep, which induces spanwise flow and cross-flow instability, significantly influences the leading-edge vortex (LEV) formation. This paper investigates the effects of wing sweep on stall flutter instabilities using a cyber-physical approach, combining experiments and high-fidelity simulations. Results reveal that increasing sweep reduces flutter amplitude and delays instability onset by weakening the LEV. The spanwise flow induced by sweep promotes LEV shedding and breakdown, leading to a stabilizing effect. Prescribed and responding motions exhibit similar dynamics, with minor differences attributed to nonlinearities in the fluid–structure interaction. Detailed analysis of the flow field and unsteady aerodynamic forces provides insights into the complex interplay between sweep, LEV development, and aeroelastic stability.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13272-024-00751-9</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1869-5582
ispartof CEAS aeronautical journal, 2024, Vol.15 (4), p.999-1014
issn 1869-5582
1869-5590
language eng
recordid cdi_proquest_journals_3124100963
source Springer Nature - Complete Springer Journals
subjects Aerodynamic forces
Aerodynamic stability
Aeroelastic stability
Aerospace Technology and Astronautics
Amplitudes
Aspect ratio
Cross flow
Dynamic structural analysis
Engineering
Fluid dynamics
Fluid flow
Fluid-structure interaction
Flutter
Leading edges
Motion stability
Original Paper
Stalling
Swept wings
Two dimensional flow
Unsteady aerodynamics
Vibration
title Leading edge vortex dynamics on finite aspect ratio swept wings exhibiting large amplitude oscillations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A00%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leading%20edge%20vortex%20dynamics%20on%20finite%20aspect%20ratio%20swept%20wings%20exhibiting%20large%20amplitude%20oscillations&rft.jtitle=CEAS%20aeronautical%20journal&rft.au=Fagley,%20Casey&rft.date=2024&rft.volume=15&rft.issue=4&rft.spage=999&rft.epage=1014&rft.pages=999-1014&rft.issn=1869-5582&rft.eissn=1869-5590&rft_id=info:doi/10.1007/s13272-024-00751-9&rft_dat=%3Cproquest_cross%3E3124100963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124100963&rft_id=info:pmid/&rfr_iscdi=true