Improvement and Analysis of Peak Shift Demand Response Scenarios of Industrial Consumers Using an Electricity Market Model
Electricity procurement of industrial consumers is becoming more and more complicated, involving a combination of various procurement methods due to electricity liberalization and decarbonization trends. This study analyzed and improved power procurement strategies for a factory to achieve carbon ne...
Gespeichert in:
Veröffentlicht in: | New generation computing 2024-12, Vol.42 (5), p.1089-1113 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1113 |
---|---|
container_issue | 5 |
container_start_page | 1089 |
container_title | New generation computing |
container_volume | 42 |
creator | Cheng, Long Izumi, Kiyoshi Hirano, Masanori |
description | Electricity procurement of industrial consumers is becoming more and more complicated, involving a combination of various procurement methods due to electricity liberalization and decarbonization trends. This study analyzed and improved power procurement strategies for a factory to achieve carbon neutralization through a multi-agent model simulating the electricity market and introduced a factory agent using various procurement methods including PV, FC, storage batteries (SB), and DR. Firstly, we created a new procurement strategy utilizing all methods. Then, by using the simulation model, we assessed the effectiveness of the existing peak shift DR scenarios in terms of cost reduction efficiency. Results revealed that the introduction of PV has led to a counterproductive outcome for DR. Based on the results, we proposed two methods to improve the effectiveness of DR, namely considering the operation of PV in the DR scenario and expanding the range of optional time periods for DR activation. Finally, we made three new DR scenarios based on our proposal. Through experiment, the new scenarios were confirmed to be effective in cost-effectiveness for decarbonization. |
doi_str_mv | 10.1007/s00354-024-00282-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3124100954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124100954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-47c1f3d83bad630867c66e5b3184ac1da77d0ca48501d620743d3664ff2e76ee3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9Whek4zLUqsWWhRr1yFN7tRp51GTGaH-etOO4M7FJZec7xy4B6FrSm4pIeouEMJTkRAWh7CMJfQEDWgWF0XS9BQN4meWcMnTc3QRwibikgs2QN_TauebL6igbrGpHR7VptyHIuAmx69gtnjxUeQtfoDqoL5B2DV1ALywUBtfNEduWrsutL4wJR5HtavAB7wMRb2OkXhSgo2iLdo9nhu_hRbPGwflJTrLTRng6vcdouXj5H38nMxenqbj0SyxTIg2EcrSnLuMr4yTnGRSWSkhXXGaCWOpM0o5Yo3IUkKdZEQJ7riUIs8ZKAnAh-imz42HfnYQWr1pOh_PDJpTJmJ_96mIFOsp65sQPOR654vK-L2mRB861n3HOnasjx1rGk28N4UI12vwf9H_uH4AuWB_sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124100954</pqid></control><display><type>article</type><title>Improvement and Analysis of Peak Shift Demand Response Scenarios of Industrial Consumers Using an Electricity Market Model</title><source>SpringerNature Journals</source><creator>Cheng, Long ; Izumi, Kiyoshi ; Hirano, Masanori</creator><creatorcontrib>Cheng, Long ; Izumi, Kiyoshi ; Hirano, Masanori</creatorcontrib><description>Electricity procurement of industrial consumers is becoming more and more complicated, involving a combination of various procurement methods due to electricity liberalization and decarbonization trends. This study analyzed and improved power procurement strategies for a factory to achieve carbon neutralization through a multi-agent model simulating the electricity market and introduced a factory agent using various procurement methods including PV, FC, storage batteries (SB), and DR. Firstly, we created a new procurement strategy utilizing all methods. Then, by using the simulation model, we assessed the effectiveness of the existing peak shift DR scenarios in terms of cost reduction efficiency. Results revealed that the introduction of PV has led to a counterproductive outcome for DR. Based on the results, we proposed two methods to improve the effectiveness of DR, namely considering the operation of PV in the DR scenario and expanding the range of optional time periods for DR activation. Finally, we made three new DR scenarios based on our proposal. Through experiment, the new scenarios were confirmed to be effective in cost-effectiveness for decarbonization.</description><identifier>ISSN: 0288-3635</identifier><identifier>EISSN: 1882-7055</identifier><identifier>DOI: 10.1007/s00354-024-00282-1</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Artificial Intelligence ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Consumers ; Cost effectiveness ; Demand analysis ; Electricity ; Energy management ; Multiagent systems ; Photovoltaic cells ; Procurement ; Research Paper ; Simulation models ; Software Engineering/Programming and Operating Systems ; Storage batteries</subject><ispartof>New generation computing, 2024-12, Vol.42 (5), p.1089-1113</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-47c1f3d83bad630867c66e5b3184ac1da77d0ca48501d620743d3664ff2e76ee3</cites><orcidid>0009-0000-9091-6167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00354-024-00282-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00354-024-00282-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Izumi, Kiyoshi</creatorcontrib><creatorcontrib>Hirano, Masanori</creatorcontrib><title>Improvement and Analysis of Peak Shift Demand Response Scenarios of Industrial Consumers Using an Electricity Market Model</title><title>New generation computing</title><addtitle>New Gener. Comput</addtitle><description>Electricity procurement of industrial consumers is becoming more and more complicated, involving a combination of various procurement methods due to electricity liberalization and decarbonization trends. This study analyzed and improved power procurement strategies for a factory to achieve carbon neutralization through a multi-agent model simulating the electricity market and introduced a factory agent using various procurement methods including PV, FC, storage batteries (SB), and DR. Firstly, we created a new procurement strategy utilizing all methods. Then, by using the simulation model, we assessed the effectiveness of the existing peak shift DR scenarios in terms of cost reduction efficiency. Results revealed that the introduction of PV has led to a counterproductive outcome for DR. Based on the results, we proposed two methods to improve the effectiveness of DR, namely considering the operation of PV in the DR scenario and expanding the range of optional time periods for DR activation. Finally, we made three new DR scenarios based on our proposal. Through experiment, the new scenarios were confirmed to be effective in cost-effectiveness for decarbonization.</description><subject>Artificial Intelligence</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Consumers</subject><subject>Cost effectiveness</subject><subject>Demand analysis</subject><subject>Electricity</subject><subject>Energy management</subject><subject>Multiagent systems</subject><subject>Photovoltaic cells</subject><subject>Procurement</subject><subject>Research Paper</subject><subject>Simulation models</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Storage batteries</subject><issn>0288-3635</issn><issn>1882-7055</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9Whek4zLUqsWWhRr1yFN7tRp51GTGaH-etOO4M7FJZec7xy4B6FrSm4pIeouEMJTkRAWh7CMJfQEDWgWF0XS9BQN4meWcMnTc3QRwibikgs2QN_TauebL6igbrGpHR7VptyHIuAmx69gtnjxUeQtfoDqoL5B2DV1ALywUBtfNEduWrsutL4wJR5HtavAB7wMRb2OkXhSgo2iLdo9nhu_hRbPGwflJTrLTRng6vcdouXj5H38nMxenqbj0SyxTIg2EcrSnLuMr4yTnGRSWSkhXXGaCWOpM0o5Yo3IUkKdZEQJ7riUIs8ZKAnAh-imz42HfnYQWr1pOh_PDJpTJmJ_96mIFOsp65sQPOR654vK-L2mRB861n3HOnasjx1rGk28N4UI12vwf9H_uH4AuWB_sw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Cheng, Long</creator><creator>Izumi, Kiyoshi</creator><creator>Hirano, Masanori</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0000-9091-6167</orcidid></search><sort><creationdate>20241201</creationdate><title>Improvement and Analysis of Peak Shift Demand Response Scenarios of Industrial Consumers Using an Electricity Market Model</title><author>Cheng, Long ; Izumi, Kiyoshi ; Hirano, Masanori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-47c1f3d83bad630867c66e5b3184ac1da77d0ca48501d620743d3664ff2e76ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Consumers</topic><topic>Cost effectiveness</topic><topic>Demand analysis</topic><topic>Electricity</topic><topic>Energy management</topic><topic>Multiagent systems</topic><topic>Photovoltaic cells</topic><topic>Procurement</topic><topic>Research Paper</topic><topic>Simulation models</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Izumi, Kiyoshi</creatorcontrib><creatorcontrib>Hirano, Masanori</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>New generation computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Long</au><au>Izumi, Kiyoshi</au><au>Hirano, Masanori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement and Analysis of Peak Shift Demand Response Scenarios of Industrial Consumers Using an Electricity Market Model</atitle><jtitle>New generation computing</jtitle><stitle>New Gener. Comput</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>42</volume><issue>5</issue><spage>1089</spage><epage>1113</epage><pages>1089-1113</pages><issn>0288-3635</issn><eissn>1882-7055</eissn><abstract>Electricity procurement of industrial consumers is becoming more and more complicated, involving a combination of various procurement methods due to electricity liberalization and decarbonization trends. This study analyzed and improved power procurement strategies for a factory to achieve carbon neutralization through a multi-agent model simulating the electricity market and introduced a factory agent using various procurement methods including PV, FC, storage batteries (SB), and DR. Firstly, we created a new procurement strategy utilizing all methods. Then, by using the simulation model, we assessed the effectiveness of the existing peak shift DR scenarios in terms of cost reduction efficiency. Results revealed that the introduction of PV has led to a counterproductive outcome for DR. Based on the results, we proposed two methods to improve the effectiveness of DR, namely considering the operation of PV in the DR scenario and expanding the range of optional time periods for DR activation. Finally, we made three new DR scenarios based on our proposal. Through experiment, the new scenarios were confirmed to be effective in cost-effectiveness for decarbonization.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00354-024-00282-1</doi><tpages>25</tpages><orcidid>https://orcid.org/0009-0000-9091-6167</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0288-3635 |
ispartof | New generation computing, 2024-12, Vol.42 (5), p.1089-1113 |
issn | 0288-3635 1882-7055 |
language | eng |
recordid | cdi_proquest_journals_3124100954 |
source | SpringerNature Journals |
subjects | Artificial Intelligence Computer Hardware Computer Science Computer Systems Organization and Communication Networks Consumers Cost effectiveness Demand analysis Electricity Energy management Multiagent systems Photovoltaic cells Procurement Research Paper Simulation models Software Engineering/Programming and Operating Systems Storage batteries |
title | Improvement and Analysis of Peak Shift Demand Response Scenarios of Industrial Consumers Using an Electricity Market Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20and%20Analysis%20of%20Peak%20Shift%20Demand%20Response%20Scenarios%20of%20Industrial%20Consumers%20Using%20an%20Electricity%20Market%20Model&rft.jtitle=New%20generation%20computing&rft.au=Cheng,%20Long&rft.date=2024-12-01&rft.volume=42&rft.issue=5&rft.spage=1089&rft.epage=1113&rft.pages=1089-1113&rft.issn=0288-3635&rft.eissn=1882-7055&rft_id=info:doi/10.1007/s00354-024-00282-1&rft_dat=%3Cproquest_cross%3E3124100954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124100954&rft_id=info:pmid/&rfr_iscdi=true |