Generation of Database of Polymer Acceptors and Machine Learning‐Assisted Screening of Efficient Candidates

ABSTRACT This paper presents a comprehensive approach for designing polymer acceptors for organic photovoltaic applications through the generation of an extensive database and the application of machine learning (ML) techniques. Over 40 ML models are trained for the prediction of power conversion ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 2024-11, Vol.124 (21), p.n/a
Hauptverfasser: Tahir, Mudassir Hussain, Khan, Naeem‐Ul‐Haq, Elhindi, Khalid M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page
container_title International journal of quantum chemistry
container_volume 124
creator Tahir, Mudassir Hussain
Khan, Naeem‐Ul‐Haq
Elhindi, Khalid M.
description ABSTRACT This paper presents a comprehensive approach for designing polymer acceptors for organic photovoltaic applications through the generation of an extensive database and the application of machine learning (ML) techniques. Over 40 ML models are trained for the prediction of power conversion efficiency (PCE). Histgradient boosting regressor has appeared as best model. Almost 10 k polymers are generated and their PCE values are predicted. The chemical space of polymers has been visualized and analyzed. Cluster analysis revealed significant differences among the selected polymers. Additionally, an assessment of synthetic accessibility for these polymers indicated that the majority can be synthesized with relative ease. Machine learning models are used to predict the power conversion efficiency (PCE). Nearly 10 k polymers are generated and their PCE values are predicted. The chemical space of polymers has visualized and analyzed.
doi_str_mv 10.1002/qua.27510
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3124097845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124097845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1870-9e0f141eb402b9f0553ce8f93cb9f06b38ab2dd667ab33f7ae087ca03d417b0d3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjSnuMkTseoQEEqAgSV2CzHOYOr1mntVKgbj8Az8iQkhJXp7uzvv5M-Qs4ZjBhAPN7u1CgWKYMDMmAwEVGSsddDMmj_IBIZ5MfkJIQlAGQ8EwOynqFDrxpbO1obeqUaVaqAXf9Yr_Zr9LTQGjdN7QNVrqL3Sr9bh3SOyjvr3r4_v4oQbGiwos_aI3aPXfzaGKstuoZO25ytVIPhlBwZtQp49leHZHFz_TK9jeYPs7tpMY80ywVEEwTDEoZlAnE5MZCmXGNuJlx3U1byXJVxVWWZUCXnRiiEXGgFvEqYKKHiQ3LR7934ervD0MhlvfOuPSk5i5PWS56kLXXZU9rXIXg0cuPtWvm9ZCA7m7K1KX9ttuy4Zz_sCvf_g_JpUfSJH13KeDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124097845</pqid></control><display><type>article</type><title>Generation of Database of Polymer Acceptors and Machine Learning‐Assisted Screening of Efficient Candidates</title><source>Wiley Journals</source><creator>Tahir, Mudassir Hussain ; Khan, Naeem‐Ul‐Haq ; Elhindi, Khalid M.</creator><creatorcontrib>Tahir, Mudassir Hussain ; Khan, Naeem‐Ul‐Haq ; Elhindi, Khalid M.</creatorcontrib><description>ABSTRACT This paper presents a comprehensive approach for designing polymer acceptors for organic photovoltaic applications through the generation of an extensive database and the application of machine learning (ML) techniques. Over 40 ML models are trained for the prediction of power conversion efficiency (PCE). Histgradient boosting regressor has appeared as best model. Almost 10 k polymers are generated and their PCE values are predicted. The chemical space of polymers has been visualized and analyzed. Cluster analysis revealed significant differences among the selected polymers. Additionally, an assessment of synthetic accessibility for these polymers indicated that the majority can be synthesized with relative ease. Machine learning models are used to predict the power conversion efficiency (PCE). Nearly 10 k polymers are generated and their PCE values are predicted. The chemical space of polymers has visualized and analyzed.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.27510</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Addition polymerization ; Chemical synthesis ; Cluster analysis ; descriptors ; Energy conversion efficiency ; Machine learning ; organic solar cells ; Polymers ; power conversion efficiency ; Predictions</subject><ispartof>International journal of quantum chemistry, 2024-11, Vol.124 (21), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1870-9e0f141eb402b9f0553ce8f93cb9f06b38ab2dd667ab33f7ae087ca03d417b0d3</cites><orcidid>0000-0001-6416-7270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.27510$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.27510$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Tahir, Mudassir Hussain</creatorcontrib><creatorcontrib>Khan, Naeem‐Ul‐Haq</creatorcontrib><creatorcontrib>Elhindi, Khalid M.</creatorcontrib><title>Generation of Database of Polymer Acceptors and Machine Learning‐Assisted Screening of Efficient Candidates</title><title>International journal of quantum chemistry</title><description>ABSTRACT This paper presents a comprehensive approach for designing polymer acceptors for organic photovoltaic applications through the generation of an extensive database and the application of machine learning (ML) techniques. Over 40 ML models are trained for the prediction of power conversion efficiency (PCE). Histgradient boosting regressor has appeared as best model. Almost 10 k polymers are generated and their PCE values are predicted. The chemical space of polymers has been visualized and analyzed. Cluster analysis revealed significant differences among the selected polymers. Additionally, an assessment of synthetic accessibility for these polymers indicated that the majority can be synthesized with relative ease. Machine learning models are used to predict the power conversion efficiency (PCE). Nearly 10 k polymers are generated and their PCE values are predicted. The chemical space of polymers has visualized and analyzed.</description><subject>Addition polymerization</subject><subject>Chemical synthesis</subject><subject>Cluster analysis</subject><subject>descriptors</subject><subject>Energy conversion efficiency</subject><subject>Machine learning</subject><subject>organic solar cells</subject><subject>Polymers</subject><subject>power conversion efficiency</subject><subject>Predictions</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjSnuMkTseoQEEqAgSV2CzHOYOr1mntVKgbj8Az8iQkhJXp7uzvv5M-Qs4ZjBhAPN7u1CgWKYMDMmAwEVGSsddDMmj_IBIZ5MfkJIQlAGQ8EwOynqFDrxpbO1obeqUaVaqAXf9Yr_Zr9LTQGjdN7QNVrqL3Sr9bh3SOyjvr3r4_v4oQbGiwos_aI3aPXfzaGKstuoZO25ytVIPhlBwZtQp49leHZHFz_TK9jeYPs7tpMY80ywVEEwTDEoZlAnE5MZCmXGNuJlx3U1byXJVxVWWZUCXnRiiEXGgFvEqYKKHiQ3LR7934ervD0MhlvfOuPSk5i5PWS56kLXXZU9rXIXg0cuPtWvm9ZCA7m7K1KX9ttuy4Zz_sCvf_g_JpUfSJH13KeDA</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Tahir, Mudassir Hussain</creator><creator>Khan, Naeem‐Ul‐Haq</creator><creator>Elhindi, Khalid M.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6416-7270</orcidid></search><sort><creationdate>20241105</creationdate><title>Generation of Database of Polymer Acceptors and Machine Learning‐Assisted Screening of Efficient Candidates</title><author>Tahir, Mudassir Hussain ; Khan, Naeem‐Ul‐Haq ; Elhindi, Khalid M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1870-9e0f141eb402b9f0553ce8f93cb9f06b38ab2dd667ab33f7ae087ca03d417b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Addition polymerization</topic><topic>Chemical synthesis</topic><topic>Cluster analysis</topic><topic>descriptors</topic><topic>Energy conversion efficiency</topic><topic>Machine learning</topic><topic>organic solar cells</topic><topic>Polymers</topic><topic>power conversion efficiency</topic><topic>Predictions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tahir, Mudassir Hussain</creatorcontrib><creatorcontrib>Khan, Naeem‐Ul‐Haq</creatorcontrib><creatorcontrib>Elhindi, Khalid M.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tahir, Mudassir Hussain</au><au>Khan, Naeem‐Ul‐Haq</au><au>Elhindi, Khalid M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of Database of Polymer Acceptors and Machine Learning‐Assisted Screening of Efficient Candidates</atitle><jtitle>International journal of quantum chemistry</jtitle><date>2024-11-05</date><risdate>2024</risdate><volume>124</volume><issue>21</issue><epage>n/a</epage><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>ABSTRACT This paper presents a comprehensive approach for designing polymer acceptors for organic photovoltaic applications through the generation of an extensive database and the application of machine learning (ML) techniques. Over 40 ML models are trained for the prediction of power conversion efficiency (PCE). Histgradient boosting regressor has appeared as best model. Almost 10 k polymers are generated and their PCE values are predicted. The chemical space of polymers has been visualized and analyzed. Cluster analysis revealed significant differences among the selected polymers. Additionally, an assessment of synthetic accessibility for these polymers indicated that the majority can be synthesized with relative ease. Machine learning models are used to predict the power conversion efficiency (PCE). Nearly 10 k polymers are generated and their PCE values are predicted. The chemical space of polymers has visualized and analyzed.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/qua.27510</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6416-7270</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2024-11, Vol.124 (21), p.n/a
issn 0020-7608
1097-461X
language eng
recordid cdi_proquest_journals_3124097845
source Wiley Journals
subjects Addition polymerization
Chemical synthesis
Cluster analysis
descriptors
Energy conversion efficiency
Machine learning
organic solar cells
Polymers
power conversion efficiency
Predictions
title Generation of Database of Polymer Acceptors and Machine Learning‐Assisted Screening of Efficient Candidates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20Database%20of%20Polymer%20Acceptors%20and%20Machine%20Learning%E2%80%90Assisted%20Screening%20of%20Efficient%20Candidates&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Tahir,%20Mudassir%20Hussain&rft.date=2024-11-05&rft.volume=124&rft.issue=21&rft.epage=n/a&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.27510&rft_dat=%3Cproquest_cross%3E3124097845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124097845&rft_id=info:pmid/&rfr_iscdi=true