Feature Enhancement Based Oriented Object Detection in Remote Sensing Images
Since objects in remote sensing imagery often have arbitrary orientations and high densities, the features of small objects are inclined to be contaminated by the background and other instances. To address the issues, we propose a new oriented object detection framework where a series of feature enh...
Gespeichert in:
Veröffentlicht in: | Neural processing letters 2024-11, Vol.56 (6), p.244, Article 244 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 244 |
container_title | Neural processing letters |
container_volume | 56 |
creator | Guo, Hongjian Zhou, Xianlin Yang, Peng |
description | Since objects in remote sensing imagery often have arbitrary orientations and high densities, the features of small objects are inclined to be contaminated by the background and other instances. To address the issues, we propose a new oriented object detection framework where a series of feature enhancement schemes are implemented so as to improve robustness and accuracy of the detector. Firstly, we design a weighted bidirectional feature pyramid network, which can be used to fuse both high-level semantic features and low-level detail features for effectively handling with multi-scale objects. Accordingly, we apply the convolutional block attention module that exploits both spatial- and channel-wise attention in our detector, and study how to effectively integrate it into the framework for adaptive feature refinement. In the meanwhile, we present a semantic segmentation guided module to generate naive mask, which is used to multiple with pyramid features to filter out background noise and improve feature representation for small objects. The experimental results on two public datasets, i.e., UCAS-AOD and DOTA, validate the effective performance of the proposed method for oriented object detection in remote sensing images. |
doi_str_mv | 10.1007/s11063-024-11699-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3123945792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123945792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-21f395679c84f287759e45caff750fb9aaf77dccc0534d4cb2e6d27870d7ad593</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9Wiek2ap1WqhUPAB7kKaualTnExN0oX_3tQRdOXqnAvnOxcOQueUXFJC1FWilNS8IkxUlNZaV_UBGlGpeKUUfz3844_RSUobQgrGyAgtZmDzLgK-C282OOggZHxjEzR4Gdty7M1qAy7jW8hF2j7gNuBH6PoM-AlCasMazzu7hnSKjrx9T3D2o2P0Mrt7nj5Ui-X9fHq9qBwTIleMeq5lrbSbCM8mSkkNQjrrvZLEr7S1XqnGOUckF41wKwZ1w9REkUbZRmo-RhdD7zb2HztI2Wz6XQzlpeGUcS2k0qyk2JBysU8pgjfb2HY2fhpKzH41M6xmymrmezVTF4gPUCrhsIb4W_0P9QW9qG9f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123945792</pqid></control><display><type>article</type><title>Feature Enhancement Based Oriented Object Detection in Remote Sensing Images</title><source>Springer Nature - Complete Springer Journals</source><source>Springer Nature OA Free Journals</source><creator>Guo, Hongjian ; Zhou, Xianlin ; Yang, Peng</creator><creatorcontrib>Guo, Hongjian ; Zhou, Xianlin ; Yang, Peng</creatorcontrib><description>Since objects in remote sensing imagery often have arbitrary orientations and high densities, the features of small objects are inclined to be contaminated by the background and other instances. To address the issues, we propose a new oriented object detection framework where a series of feature enhancement schemes are implemented so as to improve robustness and accuracy of the detector. Firstly, we design a weighted bidirectional feature pyramid network, which can be used to fuse both high-level semantic features and low-level detail features for effectively handling with multi-scale objects. Accordingly, we apply the convolutional block attention module that exploits both spatial- and channel-wise attention in our detector, and study how to effectively integrate it into the framework for adaptive feature refinement. In the meanwhile, we present a semantic segmentation guided module to generate naive mask, which is used to multiple with pyramid features to filter out background noise and improve feature representation for small objects. The experimental results on two public datasets, i.e., UCAS-AOD and DOTA, validate the effective performance of the proposed method for oriented object detection in remote sensing images.</description><identifier>ISSN: 1573-773X</identifier><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-024-11699-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Background noise ; Complex Systems ; Computational Intelligence ; Computer Science ; Computer vision ; Design ; Image enhancement ; Modules ; Noise ; Noise generation ; Object recognition ; Proposals ; Remote sensing ; Semantic segmentation ; Semantics ; Sensors ; Telematics</subject><ispartof>Neural processing letters, 2024-11, Vol.56 (6), p.244, Article 244</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-21f395679c84f287759e45caff750fb9aaf77dccc0534d4cb2e6d27870d7ad593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-024-11699-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11063-024-11699-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids></links><search><creatorcontrib>Guo, Hongjian</creatorcontrib><creatorcontrib>Zhou, Xianlin</creatorcontrib><creatorcontrib>Yang, Peng</creatorcontrib><title>Feature Enhancement Based Oriented Object Detection in Remote Sensing Images</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>Since objects in remote sensing imagery often have arbitrary orientations and high densities, the features of small objects are inclined to be contaminated by the background and other instances. To address the issues, we propose a new oriented object detection framework where a series of feature enhancement schemes are implemented so as to improve robustness and accuracy of the detector. Firstly, we design a weighted bidirectional feature pyramid network, which can be used to fuse both high-level semantic features and low-level detail features for effectively handling with multi-scale objects. Accordingly, we apply the convolutional block attention module that exploits both spatial- and channel-wise attention in our detector, and study how to effectively integrate it into the framework for adaptive feature refinement. In the meanwhile, we present a semantic segmentation guided module to generate naive mask, which is used to multiple with pyramid features to filter out background noise and improve feature representation for small objects. The experimental results on two public datasets, i.e., UCAS-AOD and DOTA, validate the effective performance of the proposed method for oriented object detection in remote sensing images.</description><subject>Artificial Intelligence</subject><subject>Background noise</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Design</subject><subject>Image enhancement</subject><subject>Modules</subject><subject>Noise</subject><subject>Noise generation</subject><subject>Object recognition</subject><subject>Proposals</subject><subject>Remote sensing</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Telematics</subject><issn>1573-773X</issn><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9Wiek2ap1WqhUPAB7kKaualTnExN0oX_3tQRdOXqnAvnOxcOQueUXFJC1FWilNS8IkxUlNZaV_UBGlGpeKUUfz3844_RSUobQgrGyAgtZmDzLgK-C282OOggZHxjEzR4Gdty7M1qAy7jW8hF2j7gNuBH6PoM-AlCasMazzu7hnSKjrx9T3D2o2P0Mrt7nj5Ui-X9fHq9qBwTIleMeq5lrbSbCM8mSkkNQjrrvZLEr7S1XqnGOUckF41wKwZ1w9REkUbZRmo-RhdD7zb2HztI2Wz6XQzlpeGUcS2k0qyk2JBysU8pgjfb2HY2fhpKzH41M6xmymrmezVTF4gPUCrhsIb4W_0P9QW9qG9f</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Guo, Hongjian</creator><creator>Zhou, Xianlin</creator><creator>Yang, Peng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241104</creationdate><title>Feature Enhancement Based Oriented Object Detection in Remote Sensing Images</title><author>Guo, Hongjian ; Zhou, Xianlin ; Yang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-21f395679c84f287759e45caff750fb9aaf77dccc0534d4cb2e6d27870d7ad593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Background noise</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Design</topic><topic>Image enhancement</topic><topic>Modules</topic><topic>Noise</topic><topic>Noise generation</topic><topic>Object recognition</topic><topic>Proposals</topic><topic>Remote sensing</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Telematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hongjian</creatorcontrib><creatorcontrib>Zhou, Xianlin</creatorcontrib><creatorcontrib>Yang, Peng</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hongjian</au><au>Zhou, Xianlin</au><au>Yang, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Enhancement Based Oriented Object Detection in Remote Sensing Images</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2024-11-04</date><risdate>2024</risdate><volume>56</volume><issue>6</issue><spage>244</spage><pages>244-</pages><artnum>244</artnum><issn>1573-773X</issn><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>Since objects in remote sensing imagery often have arbitrary orientations and high densities, the features of small objects are inclined to be contaminated by the background and other instances. To address the issues, we propose a new oriented object detection framework where a series of feature enhancement schemes are implemented so as to improve robustness and accuracy of the detector. Firstly, we design a weighted bidirectional feature pyramid network, which can be used to fuse both high-level semantic features and low-level detail features for effectively handling with multi-scale objects. Accordingly, we apply the convolutional block attention module that exploits both spatial- and channel-wise attention in our detector, and study how to effectively integrate it into the framework for adaptive feature refinement. In the meanwhile, we present a semantic segmentation guided module to generate naive mask, which is used to multiple with pyramid features to filter out background noise and improve feature representation for small objects. The experimental results on two public datasets, i.e., UCAS-AOD and DOTA, validate the effective performance of the proposed method for oriented object detection in remote sensing images.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-024-11699-6</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-773X |
ispartof | Neural processing letters, 2024-11, Vol.56 (6), p.244, Article 244 |
issn | 1573-773X 1370-4621 1573-773X |
language | eng |
recordid | cdi_proquest_journals_3123945792 |
source | Springer Nature - Complete Springer Journals; Springer Nature OA Free Journals |
subjects | Artificial Intelligence Background noise Complex Systems Computational Intelligence Computer Science Computer vision Design Image enhancement Modules Noise Noise generation Object recognition Proposals Remote sensing Semantic segmentation Semantics Sensors Telematics |
title | Feature Enhancement Based Oriented Object Detection in Remote Sensing Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Enhancement%20Based%20Oriented%20Object%20Detection%20in%20Remote%20Sensing%20Images&rft.jtitle=Neural%20processing%20letters&rft.au=Guo,%20Hongjian&rft.date=2024-11-04&rft.volume=56&rft.issue=6&rft.spage=244&rft.pages=244-&rft.artnum=244&rft.issn=1573-773X&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-024-11699-6&rft_dat=%3Cproquest_cross%3E3123945792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123945792&rft_id=info:pmid/&rfr_iscdi=true |