Feature Enhancement Based Oriented Object Detection in Remote Sensing Images

Since objects in remote sensing imagery often have arbitrary orientations and high densities, the features of small objects are inclined to be contaminated by the background and other instances. To address the issues, we propose a new oriented object detection framework where a series of feature enh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2024-11, Vol.56 (6), p.244, Article 244
Hauptverfasser: Guo, Hongjian, Zhou, Xianlin, Yang, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 244
container_title Neural processing letters
container_volume 56
creator Guo, Hongjian
Zhou, Xianlin
Yang, Peng
description Since objects in remote sensing imagery often have arbitrary orientations and high densities, the features of small objects are inclined to be contaminated by the background and other instances. To address the issues, we propose a new oriented object detection framework where a series of feature enhancement schemes are implemented so as to improve robustness and accuracy of the detector. Firstly, we design a weighted bidirectional feature pyramid network, which can be used to fuse both high-level semantic features and low-level detail features for effectively handling with multi-scale objects. Accordingly, we apply the convolutional block attention module that exploits both spatial- and channel-wise attention in our detector, and study how to effectively integrate it into the framework for adaptive feature refinement. In the meanwhile, we present a semantic segmentation guided module to generate naive mask, which is used to multiple with pyramid features to filter out background noise and improve feature representation for small objects. The experimental results on two public datasets, i.e., UCAS-AOD and DOTA, validate the effective performance of the proposed method for oriented object detection in remote sensing images.
doi_str_mv 10.1007/s11063-024-11699-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3123945792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123945792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-21f395679c84f287759e45caff750fb9aaf77dccc0534d4cb2e6d27870d7ad593</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9Wiek2ap1WqhUPAB7kKaualTnExN0oX_3tQRdOXqnAvnOxcOQueUXFJC1FWilNS8IkxUlNZaV_UBGlGpeKUUfz3844_RSUobQgrGyAgtZmDzLgK-C282OOggZHxjEzR4Gdty7M1qAy7jW8hF2j7gNuBH6PoM-AlCasMazzu7hnSKjrx9T3D2o2P0Mrt7nj5Ui-X9fHq9qBwTIleMeq5lrbSbCM8mSkkNQjrrvZLEr7S1XqnGOUckF41wKwZ1w9REkUbZRmo-RhdD7zb2HztI2Wz6XQzlpeGUcS2k0qyk2JBysU8pgjfb2HY2fhpKzH41M6xmymrmezVTF4gPUCrhsIb4W_0P9QW9qG9f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123945792</pqid></control><display><type>article</type><title>Feature Enhancement Based Oriented Object Detection in Remote Sensing Images</title><source>Springer Nature - Complete Springer Journals</source><source>Springer Nature OA Free Journals</source><creator>Guo, Hongjian ; Zhou, Xianlin ; Yang, Peng</creator><creatorcontrib>Guo, Hongjian ; Zhou, Xianlin ; Yang, Peng</creatorcontrib><description>Since objects in remote sensing imagery often have arbitrary orientations and high densities, the features of small objects are inclined to be contaminated by the background and other instances. To address the issues, we propose a new oriented object detection framework where a series of feature enhancement schemes are implemented so as to improve robustness and accuracy of the detector. Firstly, we design a weighted bidirectional feature pyramid network, which can be used to fuse both high-level semantic features and low-level detail features for effectively handling with multi-scale objects. Accordingly, we apply the convolutional block attention module that exploits both spatial- and channel-wise attention in our detector, and study how to effectively integrate it into the framework for adaptive feature refinement. In the meanwhile, we present a semantic segmentation guided module to generate naive mask, which is used to multiple with pyramid features to filter out background noise and improve feature representation for small objects. The experimental results on two public datasets, i.e., UCAS-AOD and DOTA, validate the effective performance of the proposed method for oriented object detection in remote sensing images.</description><identifier>ISSN: 1573-773X</identifier><identifier>ISSN: 1370-4621</identifier><identifier>EISSN: 1573-773X</identifier><identifier>DOI: 10.1007/s11063-024-11699-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Background noise ; Complex Systems ; Computational Intelligence ; Computer Science ; Computer vision ; Design ; Image enhancement ; Modules ; Noise ; Noise generation ; Object recognition ; Proposals ; Remote sensing ; Semantic segmentation ; Semantics ; Sensors ; Telematics</subject><ispartof>Neural processing letters, 2024-11, Vol.56 (6), p.244, Article 244</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-21f395679c84f287759e45caff750fb9aaf77dccc0534d4cb2e6d27870d7ad593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11063-024-11699-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11063-024-11699-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids></links><search><creatorcontrib>Guo, Hongjian</creatorcontrib><creatorcontrib>Zhou, Xianlin</creatorcontrib><creatorcontrib>Yang, Peng</creatorcontrib><title>Feature Enhancement Based Oriented Object Detection in Remote Sensing Images</title><title>Neural processing letters</title><addtitle>Neural Process Lett</addtitle><description>Since objects in remote sensing imagery often have arbitrary orientations and high densities, the features of small objects are inclined to be contaminated by the background and other instances. To address the issues, we propose a new oriented object detection framework where a series of feature enhancement schemes are implemented so as to improve robustness and accuracy of the detector. Firstly, we design a weighted bidirectional feature pyramid network, which can be used to fuse both high-level semantic features and low-level detail features for effectively handling with multi-scale objects. Accordingly, we apply the convolutional block attention module that exploits both spatial- and channel-wise attention in our detector, and study how to effectively integrate it into the framework for adaptive feature refinement. In the meanwhile, we present a semantic segmentation guided module to generate naive mask, which is used to multiple with pyramid features to filter out background noise and improve feature representation for small objects. The experimental results on two public datasets, i.e., UCAS-AOD and DOTA, validate the effective performance of the proposed method for oriented object detection in remote sensing images.</description><subject>Artificial Intelligence</subject><subject>Background noise</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Design</subject><subject>Image enhancement</subject><subject>Modules</subject><subject>Noise</subject><subject>Noise generation</subject><subject>Object recognition</subject><subject>Proposals</subject><subject>Remote sensing</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Telematics</subject><issn>1573-773X</issn><issn>1370-4621</issn><issn>1573-773X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9Wiek2ap1WqhUPAB7kKaualTnExN0oX_3tQRdOXqnAvnOxcOQueUXFJC1FWilNS8IkxUlNZaV_UBGlGpeKUUfz3844_RSUobQgrGyAgtZmDzLgK-C282OOggZHxjEzR4Gdty7M1qAy7jW8hF2j7gNuBH6PoM-AlCasMazzu7hnSKjrx9T3D2o2P0Mrt7nj5Ui-X9fHq9qBwTIleMeq5lrbSbCM8mSkkNQjrrvZLEr7S1XqnGOUckF41wKwZ1w9REkUbZRmo-RhdD7zb2HztI2Wz6XQzlpeGUcS2k0qyk2JBysU8pgjfb2HY2fhpKzH41M6xmymrmezVTF4gPUCrhsIb4W_0P9QW9qG9f</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Guo, Hongjian</creator><creator>Zhou, Xianlin</creator><creator>Yang, Peng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241104</creationdate><title>Feature Enhancement Based Oriented Object Detection in Remote Sensing Images</title><author>Guo, Hongjian ; Zhou, Xianlin ; Yang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-21f395679c84f287759e45caff750fb9aaf77dccc0534d4cb2e6d27870d7ad593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Background noise</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Design</topic><topic>Image enhancement</topic><topic>Modules</topic><topic>Noise</topic><topic>Noise generation</topic><topic>Object recognition</topic><topic>Proposals</topic><topic>Remote sensing</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Telematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hongjian</creatorcontrib><creatorcontrib>Zhou, Xianlin</creatorcontrib><creatorcontrib>Yang, Peng</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Neural processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hongjian</au><au>Zhou, Xianlin</au><au>Yang, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Enhancement Based Oriented Object Detection in Remote Sensing Images</atitle><jtitle>Neural processing letters</jtitle><stitle>Neural Process Lett</stitle><date>2024-11-04</date><risdate>2024</risdate><volume>56</volume><issue>6</issue><spage>244</spage><pages>244-</pages><artnum>244</artnum><issn>1573-773X</issn><issn>1370-4621</issn><eissn>1573-773X</eissn><abstract>Since objects in remote sensing imagery often have arbitrary orientations and high densities, the features of small objects are inclined to be contaminated by the background and other instances. To address the issues, we propose a new oriented object detection framework where a series of feature enhancement schemes are implemented so as to improve robustness and accuracy of the detector. Firstly, we design a weighted bidirectional feature pyramid network, which can be used to fuse both high-level semantic features and low-level detail features for effectively handling with multi-scale objects. Accordingly, we apply the convolutional block attention module that exploits both spatial- and channel-wise attention in our detector, and study how to effectively integrate it into the framework for adaptive feature refinement. In the meanwhile, we present a semantic segmentation guided module to generate naive mask, which is used to multiple with pyramid features to filter out background noise and improve feature representation for small objects. The experimental results on two public datasets, i.e., UCAS-AOD and DOTA, validate the effective performance of the proposed method for oriented object detection in remote sensing images.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11063-024-11699-6</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1573-773X
ispartof Neural processing letters, 2024-11, Vol.56 (6), p.244, Article 244
issn 1573-773X
1370-4621
1573-773X
language eng
recordid cdi_proquest_journals_3123945792
source Springer Nature - Complete Springer Journals; Springer Nature OA Free Journals
subjects Artificial Intelligence
Background noise
Complex Systems
Computational Intelligence
Computer Science
Computer vision
Design
Image enhancement
Modules
Noise
Noise generation
Object recognition
Proposals
Remote sensing
Semantic segmentation
Semantics
Sensors
Telematics
title Feature Enhancement Based Oriented Object Detection in Remote Sensing Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Enhancement%20Based%20Oriented%20Object%20Detection%20in%20Remote%20Sensing%20Images&rft.jtitle=Neural%20processing%20letters&rft.au=Guo,%20Hongjian&rft.date=2024-11-04&rft.volume=56&rft.issue=6&rft.spage=244&rft.pages=244-&rft.artnum=244&rft.issn=1573-773X&rft.eissn=1573-773X&rft_id=info:doi/10.1007/s11063-024-11699-6&rft_dat=%3Cproquest_cross%3E3123945792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123945792&rft_id=info:pmid/&rfr_iscdi=true