Cs/FA Gradient Distribution in Perovskite NCs Enables Sub‐Nanometer Spectral Regulation and BT.2020 Pure‐Green Electroluminescence

Lead halide perovskite exhibits great prospects in next‐generation display. However, single‐cation inorganic perovskite nanocrystals (NCs) still suffer from offset gamut coordinates determined by bandgap, short operating life, and low‐efficiency in light‐emitting diodes (LEDs), on account of the lim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2024-11, Vol.12 (31), p.n/a
Hauptverfasser: Yang, Linxiang, Zhou, Yihui, Xiang, Hengyang, Yuan, Shichen, Shan, Qingsong, Zhang, Shuai, Zou, Yousheng, Li, Yan, Chen, Hongting, Fang, Tao, Yan, Danni, Xie, An, Zeng, Haibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page
container_title Advanced optical materials
container_volume 12
creator Yang, Linxiang
Zhou, Yihui
Xiang, Hengyang
Yuan, Shichen
Shan, Qingsong
Zhang, Shuai
Zou, Yousheng
Li, Yan
Chen, Hongting
Fang, Tao
Yan, Danni
Xie, An
Zeng, Haibo
description Lead halide perovskite exhibits great prospects in next‐generation display. However, single‐cation inorganic perovskite nanocrystals (NCs) still suffer from offset gamut coordinates determined by bandgap, short operating life, and low‐efficiency in light‐emitting diodes (LEDs), on account of the limitations in lattice stability and defect levels. Here, a thermodynamic co‐competition strategy is proposed for fabricating Cs1−xFAxPbBr3 NCs, which reveals the spatial distribution of A‐site cations and the improvement of photoelectronic performance. This strategy achieves precise control of NCs in the pure‐green range with an accuracy of sub‐nanometer, further promotes the comprehensively filling‐suppressing effect of incongruous lattice and surface defects. Finally, the high‐precision adjusting in electroluminescence is achieved, and the champion device achieves a CIE coordinate of (0.121, 0.788), meeting the pure‐green range in BT.2020. Simultaneously, the PeLED demonstrates an EQE exceeding 20% with superior stability, accompanied by 20‐fold improvement in lifetime, indicating tremendous potential in next‐generation display. A thermodynamic co‐competition strategy is proposed to synthesize Cs/FA gradient‐distribution Cs1−xFAxPbBr3 nanocrystals, enabling the spectral regulation with sub‐nanometer precision and comprehensively filling‐suppressing the incongruous defects. The devices achieve precise regulation in electroluminescence and ideal pure‐green gamut in BT.2020. The champion device demonstrates an external quantum efficiency exceeding 20%, accompanied by 20‐fold improvement in lifetime.
doi_str_mv 10.1002/adom.202401482
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3123923397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123923397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2022-e24ec7f4a4d48f6790555d655dd2084a594ac3ecd5a0254b351e68986a21ff6e3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEhV0ZbbEnNZ2nK-xpB8glbaiZY6c5IJcErvYCagbEzO_kV9CQhGwMZzuTnqf904vQheUDCghbChyXQ0YYZxQHrIj1GM08hxKAnr8Zz5FfWu3hJB2cSMe9NBbbIfTEZ4ZkUtQNR5LWxuZNrXUCkuFV2D0s32UNeBFbPFEibQEi9dN-vH6vhBKV1CDwesdZLURJb6Dh6YUX7RQOb7adE8RvGoMtMDMACg8KTuxLptKKrAZqAzO0UkhSgv9736G7qeTTXztzJezm3g0d7LWhjnAOGRBwQXPeVj4QUQ8z8v9tnJGQi68iIvMhSz3BGEeT12Pgh9GoS8YLQof3DN0efDdGf3UgK2TrW6Mak8mLmVuxFw3ClrV4KDKjLbWQJHsjKyE2SeUJF3cSRd38hN3C0QH4EWWsP9HnYzGy9tf9hMwNYWY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123923397</pqid></control><display><type>article</type><title>Cs/FA Gradient Distribution in Perovskite NCs Enables Sub‐Nanometer Spectral Regulation and BT.2020 Pure‐Green Electroluminescence</title><source>Wiley-Blackwell Journals</source><creator>Yang, Linxiang ; Zhou, Yihui ; Xiang, Hengyang ; Yuan, Shichen ; Shan, Qingsong ; Zhang, Shuai ; Zou, Yousheng ; Li, Yan ; Chen, Hongting ; Fang, Tao ; Yan, Danni ; Xie, An ; Zeng, Haibo</creator><creatorcontrib>Yang, Linxiang ; Zhou, Yihui ; Xiang, Hengyang ; Yuan, Shichen ; Shan, Qingsong ; Zhang, Shuai ; Zou, Yousheng ; Li, Yan ; Chen, Hongting ; Fang, Tao ; Yan, Danni ; Xie, An ; Zeng, Haibo</creatorcontrib><description>Lead halide perovskite exhibits great prospects in next‐generation display. However, single‐cation inorganic perovskite nanocrystals (NCs) still suffer from offset gamut coordinates determined by bandgap, short operating life, and low‐efficiency in light‐emitting diodes (LEDs), on account of the limitations in lattice stability and defect levels. Here, a thermodynamic co‐competition strategy is proposed for fabricating Cs1−xFAxPbBr3 NCs, which reveals the spatial distribution of A‐site cations and the improvement of photoelectronic performance. This strategy achieves precise control of NCs in the pure‐green range with an accuracy of sub‐nanometer, further promotes the comprehensively filling‐suppressing effect of incongruous lattice and surface defects. Finally, the high‐precision adjusting in electroluminescence is achieved, and the champion device achieves a CIE coordinate of (0.121, 0.788), meeting the pure‐green range in BT.2020. Simultaneously, the PeLED demonstrates an EQE exceeding 20% with superior stability, accompanied by 20‐fold improvement in lifetime, indicating tremendous potential in next‐generation display. A thermodynamic co‐competition strategy is proposed to synthesize Cs/FA gradient‐distribution Cs1−xFAxPbBr3 nanocrystals, enabling the spectral regulation with sub‐nanometer precision and comprehensively filling‐suppressing the incongruous defects. The devices achieve precise regulation in electroluminescence and ideal pure‐green gamut in BT.2020. The champion device demonstrates an external quantum efficiency exceeding 20%, accompanied by 20‐fold improvement in lifetime.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202401482</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cations ; Cs/FA gradient distribution ; Electroluminescence ; high‐efficiency PeLEDs, lead halide perovskite nanocrystals ; Lead compounds ; Light emitting diodes ; Metal halides ; Perovskites ; pure‐green emission ; Spatial distribution ; Stability ; Strategy ; sub‐anometer spectral regulation ; Surface defects</subject><ispartof>Advanced optical materials, 2024-11, Vol.12 (31), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2022-e24ec7f4a4d48f6790555d655dd2084a594ac3ecd5a0254b351e68986a21ff6e3</cites><orcidid>0000-0002-0281-3617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202401482$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202401482$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yang, Linxiang</creatorcontrib><creatorcontrib>Zhou, Yihui</creatorcontrib><creatorcontrib>Xiang, Hengyang</creatorcontrib><creatorcontrib>Yuan, Shichen</creatorcontrib><creatorcontrib>Shan, Qingsong</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Zou, Yousheng</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Chen, Hongting</creatorcontrib><creatorcontrib>Fang, Tao</creatorcontrib><creatorcontrib>Yan, Danni</creatorcontrib><creatorcontrib>Xie, An</creatorcontrib><creatorcontrib>Zeng, Haibo</creatorcontrib><title>Cs/FA Gradient Distribution in Perovskite NCs Enables Sub‐Nanometer Spectral Regulation and BT.2020 Pure‐Green Electroluminescence</title><title>Advanced optical materials</title><description>Lead halide perovskite exhibits great prospects in next‐generation display. However, single‐cation inorganic perovskite nanocrystals (NCs) still suffer from offset gamut coordinates determined by bandgap, short operating life, and low‐efficiency in light‐emitting diodes (LEDs), on account of the limitations in lattice stability and defect levels. Here, a thermodynamic co‐competition strategy is proposed for fabricating Cs1−xFAxPbBr3 NCs, which reveals the spatial distribution of A‐site cations and the improvement of photoelectronic performance. This strategy achieves precise control of NCs in the pure‐green range with an accuracy of sub‐nanometer, further promotes the comprehensively filling‐suppressing effect of incongruous lattice and surface defects. Finally, the high‐precision adjusting in electroluminescence is achieved, and the champion device achieves a CIE coordinate of (0.121, 0.788), meeting the pure‐green range in BT.2020. Simultaneously, the PeLED demonstrates an EQE exceeding 20% with superior stability, accompanied by 20‐fold improvement in lifetime, indicating tremendous potential in next‐generation display. A thermodynamic co‐competition strategy is proposed to synthesize Cs/FA gradient‐distribution Cs1−xFAxPbBr3 nanocrystals, enabling the spectral regulation with sub‐nanometer precision and comprehensively filling‐suppressing the incongruous defects. The devices achieve precise regulation in electroluminescence and ideal pure‐green gamut in BT.2020. The champion device demonstrates an external quantum efficiency exceeding 20%, accompanied by 20‐fold improvement in lifetime.</description><subject>Cations</subject><subject>Cs/FA gradient distribution</subject><subject>Electroluminescence</subject><subject>high‐efficiency PeLEDs, lead halide perovskite nanocrystals</subject><subject>Lead compounds</subject><subject>Light emitting diodes</subject><subject>Metal halides</subject><subject>Perovskites</subject><subject>pure‐green emission</subject><subject>Spatial distribution</subject><subject>Stability</subject><subject>Strategy</subject><subject>sub‐anometer spectral regulation</subject><subject>Surface defects</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEhV0ZbbEnNZ2nK-xpB8glbaiZY6c5IJcErvYCagbEzO_kV9CQhGwMZzuTnqf904vQheUDCghbChyXQ0YYZxQHrIj1GM08hxKAnr8Zz5FfWu3hJB2cSMe9NBbbIfTEZ4ZkUtQNR5LWxuZNrXUCkuFV2D0s32UNeBFbPFEibQEi9dN-vH6vhBKV1CDwesdZLURJb6Dh6YUX7RQOb7adE8RvGoMtMDMACg8KTuxLptKKrAZqAzO0UkhSgv9736G7qeTTXztzJezm3g0d7LWhjnAOGRBwQXPeVj4QUQ8z8v9tnJGQi68iIvMhSz3BGEeT12Pgh9GoS8YLQof3DN0efDdGf3UgK2TrW6Mak8mLmVuxFw3ClrV4KDKjLbWQJHsjKyE2SeUJF3cSRd38hN3C0QH4EWWsP9HnYzGy9tf9hMwNYWY</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Yang, Linxiang</creator><creator>Zhou, Yihui</creator><creator>Xiang, Hengyang</creator><creator>Yuan, Shichen</creator><creator>Shan, Qingsong</creator><creator>Zhang, Shuai</creator><creator>Zou, Yousheng</creator><creator>Li, Yan</creator><creator>Chen, Hongting</creator><creator>Fang, Tao</creator><creator>Yan, Danni</creator><creator>Xie, An</creator><creator>Zeng, Haibo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0281-3617</orcidid></search><sort><creationdate>20241101</creationdate><title>Cs/FA Gradient Distribution in Perovskite NCs Enables Sub‐Nanometer Spectral Regulation and BT.2020 Pure‐Green Electroluminescence</title><author>Yang, Linxiang ; Zhou, Yihui ; Xiang, Hengyang ; Yuan, Shichen ; Shan, Qingsong ; Zhang, Shuai ; Zou, Yousheng ; Li, Yan ; Chen, Hongting ; Fang, Tao ; Yan, Danni ; Xie, An ; Zeng, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2022-e24ec7f4a4d48f6790555d655dd2084a594ac3ecd5a0254b351e68986a21ff6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cations</topic><topic>Cs/FA gradient distribution</topic><topic>Electroluminescence</topic><topic>high‐efficiency PeLEDs, lead halide perovskite nanocrystals</topic><topic>Lead compounds</topic><topic>Light emitting diodes</topic><topic>Metal halides</topic><topic>Perovskites</topic><topic>pure‐green emission</topic><topic>Spatial distribution</topic><topic>Stability</topic><topic>Strategy</topic><topic>sub‐anometer spectral regulation</topic><topic>Surface defects</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Linxiang</creatorcontrib><creatorcontrib>Zhou, Yihui</creatorcontrib><creatorcontrib>Xiang, Hengyang</creatorcontrib><creatorcontrib>Yuan, Shichen</creatorcontrib><creatorcontrib>Shan, Qingsong</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Zou, Yousheng</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Chen, Hongting</creatorcontrib><creatorcontrib>Fang, Tao</creatorcontrib><creatorcontrib>Yan, Danni</creatorcontrib><creatorcontrib>Xie, An</creatorcontrib><creatorcontrib>Zeng, Haibo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Linxiang</au><au>Zhou, Yihui</au><au>Xiang, Hengyang</au><au>Yuan, Shichen</au><au>Shan, Qingsong</au><au>Zhang, Shuai</au><au>Zou, Yousheng</au><au>Li, Yan</au><au>Chen, Hongting</au><au>Fang, Tao</au><au>Yan, Danni</au><au>Xie, An</au><au>Zeng, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cs/FA Gradient Distribution in Perovskite NCs Enables Sub‐Nanometer Spectral Regulation and BT.2020 Pure‐Green Electroluminescence</atitle><jtitle>Advanced optical materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>12</volume><issue>31</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Lead halide perovskite exhibits great prospects in next‐generation display. However, single‐cation inorganic perovskite nanocrystals (NCs) still suffer from offset gamut coordinates determined by bandgap, short operating life, and low‐efficiency in light‐emitting diodes (LEDs), on account of the limitations in lattice stability and defect levels. Here, a thermodynamic co‐competition strategy is proposed for fabricating Cs1−xFAxPbBr3 NCs, which reveals the spatial distribution of A‐site cations and the improvement of photoelectronic performance. This strategy achieves precise control of NCs in the pure‐green range with an accuracy of sub‐nanometer, further promotes the comprehensively filling‐suppressing effect of incongruous lattice and surface defects. Finally, the high‐precision adjusting in electroluminescence is achieved, and the champion device achieves a CIE coordinate of (0.121, 0.788), meeting the pure‐green range in BT.2020. Simultaneously, the PeLED demonstrates an EQE exceeding 20% with superior stability, accompanied by 20‐fold improvement in lifetime, indicating tremendous potential in next‐generation display. A thermodynamic co‐competition strategy is proposed to synthesize Cs/FA gradient‐distribution Cs1−xFAxPbBr3 nanocrystals, enabling the spectral regulation with sub‐nanometer precision and comprehensively filling‐suppressing the incongruous defects. The devices achieve precise regulation in electroluminescence and ideal pure‐green gamut in BT.2020. The champion device demonstrates an external quantum efficiency exceeding 20%, accompanied by 20‐fold improvement in lifetime.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202401482</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0281-3617</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2024-11, Vol.12 (31), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_3123923397
source Wiley-Blackwell Journals
subjects Cations
Cs/FA gradient distribution
Electroluminescence
high‐efficiency PeLEDs, lead halide perovskite nanocrystals
Lead compounds
Light emitting diodes
Metal halides
Perovskites
pure‐green emission
Spatial distribution
Stability
Strategy
sub‐anometer spectral regulation
Surface defects
title Cs/FA Gradient Distribution in Perovskite NCs Enables Sub‐Nanometer Spectral Regulation and BT.2020 Pure‐Green Electroluminescence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cs/FA%20Gradient%20Distribution%20in%20Perovskite%20NCs%20Enables%20Sub%E2%80%90Nanometer%20Spectral%20Regulation%20and%20BT.2020%20Pure%E2%80%90Green%20Electroluminescence&rft.jtitle=Advanced%20optical%20materials&rft.au=Yang,%20Linxiang&rft.date=2024-11-01&rft.volume=12&rft.issue=31&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202401482&rft_dat=%3Cproquest_cross%3E3123923397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123923397&rft_id=info:pmid/&rfr_iscdi=true