Quantum linear algebra for disordered electrons
We describe how to use quantum linear algebra to simulate a physically realistic model of disordered non-interacting electrons on exponentially many lattice sites. The physics of disordered electrons outside of one dimension challenges classical computation due to the critical nature of the Anderson...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chen, Jielun Chan, Garnet Kin-Lic |
description | We describe how to use quantum linear algebra to simulate a physically realistic model of disordered non-interacting electrons on exponentially many lattice sites. The physics of disordered electrons outside of one dimension challenges classical computation due to the critical nature of the Anderson localization transition or exponential localization lengths, while the atypical distribution of the local density of states limits the power of disorder averaged approaches. We overcome this by simulating an exponentially large disorder instance using a block-encoded hopping matrix of physical form where disorder is introduced by pseudorandom functions. Key physical quantities, including the reduced density matrix, Green's function, and local density of states, as well as bulk-averaged observables such as the linear conductivity, can then be computed using quantum singular value transformation, quantum amplitude estimation, and trace estimation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3123920550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123920550</sourcerecordid><originalsourceid>FETCH-proquest_journals_31239205503</originalsourceid><addsrcrecordid>eNqNyk0KwjAQQOEgCBbtHQKui-mM8WctilvBfYlmKi0x0Znk_rrwAK7e4nsTVQFi2-zWADNVi4zGGNhswVqs1OpSXMzlqcMQybF24UE3drpPrP0giT0xeU2B7plTlIWa9i4I1b_O1fJ0vB7OzYvTu5DkbkyF45c6bAH3YKw1-N_1AVSGMv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123920550</pqid></control><display><type>article</type><title>Quantum linear algebra for disordered electrons</title><source>Free E- Journals</source><creator>Chen, Jielun ; Chan, Garnet Kin-Lic</creator><creatorcontrib>Chen, Jielun ; Chan, Garnet Kin-Lic</creatorcontrib><description>We describe how to use quantum linear algebra to simulate a physically realistic model of disordered non-interacting electrons on exponentially many lattice sites. The physics of disordered electrons outside of one dimension challenges classical computation due to the critical nature of the Anderson localization transition or exponential localization lengths, while the atypical distribution of the local density of states limits the power of disorder averaged approaches. We overcome this by simulating an exponentially large disorder instance using a block-encoded hopping matrix of physical form where disorder is introduced by pseudorandom functions. Key physical quantities, including the reduced density matrix, Green's function, and local density of states, as well as bulk-averaged observables such as the linear conductivity, can then be computed using quantum singular value transformation, quantum amplitude estimation, and trace estimation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anderson localization ; Bulk density ; Density of states ; Electrons ; Green's functions ; Lattice sites ; Linear algebra ; Pseudorandom</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chen, Jielun</creatorcontrib><creatorcontrib>Chan, Garnet Kin-Lic</creatorcontrib><title>Quantum linear algebra for disordered electrons</title><title>arXiv.org</title><description>We describe how to use quantum linear algebra to simulate a physically realistic model of disordered non-interacting electrons on exponentially many lattice sites. The physics of disordered electrons outside of one dimension challenges classical computation due to the critical nature of the Anderson localization transition or exponential localization lengths, while the atypical distribution of the local density of states limits the power of disorder averaged approaches. We overcome this by simulating an exponentially large disorder instance using a block-encoded hopping matrix of physical form where disorder is introduced by pseudorandom functions. Key physical quantities, including the reduced density matrix, Green's function, and local density of states, as well as bulk-averaged observables such as the linear conductivity, can then be computed using quantum singular value transformation, quantum amplitude estimation, and trace estimation.</description><subject>Anderson localization</subject><subject>Bulk density</subject><subject>Density of states</subject><subject>Electrons</subject><subject>Green's functions</subject><subject>Lattice sites</subject><subject>Linear algebra</subject><subject>Pseudorandom</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0KwjAQQOEgCBbtHQKui-mM8WctilvBfYlmKi0x0Znk_rrwAK7e4nsTVQFi2-zWADNVi4zGGNhswVqs1OpSXMzlqcMQybF24UE3drpPrP0giT0xeU2B7plTlIWa9i4I1b_O1fJ0vB7OzYvTu5DkbkyF45c6bAH3YKw1-N_1AVSGMv8</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Chen, Jielun</creator><creator>Chan, Garnet Kin-Lic</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241101</creationdate><title>Quantum linear algebra for disordered electrons</title><author>Chen, Jielun ; Chan, Garnet Kin-Lic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31239205503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anderson localization</topic><topic>Bulk density</topic><topic>Density of states</topic><topic>Electrons</topic><topic>Green's functions</topic><topic>Lattice sites</topic><topic>Linear algebra</topic><topic>Pseudorandom</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jielun</creatorcontrib><creatorcontrib>Chan, Garnet Kin-Lic</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jielun</au><au>Chan, Garnet Kin-Lic</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantum linear algebra for disordered electrons</atitle><jtitle>arXiv.org</jtitle><date>2024-11-01</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We describe how to use quantum linear algebra to simulate a physically realistic model of disordered non-interacting electrons on exponentially many lattice sites. The physics of disordered electrons outside of one dimension challenges classical computation due to the critical nature of the Anderson localization transition or exponential localization lengths, while the atypical distribution of the local density of states limits the power of disorder averaged approaches. We overcome this by simulating an exponentially large disorder instance using a block-encoded hopping matrix of physical form where disorder is introduced by pseudorandom functions. Key physical quantities, including the reduced density matrix, Green's function, and local density of states, as well as bulk-averaged observables such as the linear conductivity, can then be computed using quantum singular value transformation, quantum amplitude estimation, and trace estimation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3123920550 |
source | Free E- Journals |
subjects | Anderson localization Bulk density Density of states Electrons Green's functions Lattice sites Linear algebra Pseudorandom |
title | Quantum linear algebra for disordered electrons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantum%20linear%20algebra%20for%20disordered%20electrons&rft.jtitle=arXiv.org&rft.au=Chen,%20Jielun&rft.date=2024-11-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3123920550%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123920550&rft_id=info:pmid/&rfr_iscdi=true |