RSL-SQL: Robust Schema Linking in Text-to-SQL Generation
Text-to-SQL generation aims to translate natural language questions into SQL statements. In Text-to-SQL based on large language models, schema linking is a widely adopted strategy to streamline the input for LLMs by selecting only relevant schema elements, therefore reducing noise and computational...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cao, Zhenbiao Zheng, Yuanlei Fan, Zhihao Zhang, Xiaojin Chen, Wei Bai, Xiang |
description | Text-to-SQL generation aims to translate natural language questions into SQL statements. In Text-to-SQL based on large language models, schema linking is a widely adopted strategy to streamline the input for LLMs by selecting only relevant schema elements, therefore reducing noise and computational overhead. However, schema linking faces risks that require caution, including the potential omission of necessary elements and disruption of database structural integrity. To address these challenges, we propose a novel framework called RSL-SQL that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction. We improve the recall of pattern linking using forward and backward pruning methods, achieving a strict recall of 94% while reducing the number of input columns by 83%. Furthermore, it hedges the risk by voting between a full mode and a simplified mode enhanced with contextual information. Experiments on the BIRD and Spider benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on Spider using GPT-4o. Furthermore, our approach outperforms a series of GPT-4 based Text-to-SQL systems when adopting DeepSeek (much cheaper) with same intact prompts. Extensive analysis and ablation studies confirm the effectiveness of each component in our framework. The codes are available at https://github.com/Laqcce-cao/RSL-SQL. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3123920115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123920115</sourcerecordid><originalsourceid>FETCH-proquest_journals_31239201153</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCAr20Q0O9LFSCMpPKi0uUQhOzkjNTVTwyczLzsxLV8jMUwhJrSjRLckHqVJwT81LLUosyczP42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGNDI2NLIwNDQ1Nj4lQBAGhQNEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123920115</pqid></control><display><type>article</type><title>RSL-SQL: Robust Schema Linking in Text-to-SQL Generation</title><source>Free E- Journals</source><creator>Cao, Zhenbiao ; Zheng, Yuanlei ; Fan, Zhihao ; Zhang, Xiaojin ; Chen, Wei ; Bai, Xiang</creator><creatorcontrib>Cao, Zhenbiao ; Zheng, Yuanlei ; Fan, Zhihao ; Zhang, Xiaojin ; Chen, Wei ; Bai, Xiang</creatorcontrib><description>Text-to-SQL generation aims to translate natural language questions into SQL statements. In Text-to-SQL based on large language models, schema linking is a widely adopted strategy to streamline the input for LLMs by selecting only relevant schema elements, therefore reducing noise and computational overhead. However, schema linking faces risks that require caution, including the potential omission of necessary elements and disruption of database structural integrity. To address these challenges, we propose a novel framework called RSL-SQL that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction. We improve the recall of pattern linking using forward and backward pruning methods, achieving a strict recall of 94% while reducing the number of input columns by 83%. Furthermore, it hedges the risk by voting between a full mode and a simplified mode enhanced with contextual information. Experiments on the BIRD and Spider benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on Spider using GPT-4o. Furthermore, our approach outperforms a series of GPT-4 based Text-to-SQL systems when adopting DeepSeek (much cheaper) with same intact prompts. Extensive analysis and ablation studies confirm the effectiveness of each component in our framework. The codes are available at https://github.com/Laqcce-cao/RSL-SQL.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ablation ; Large language models ; Query languages ; Speech recognition ; Strategy ; Structural integrity</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cao, Zhenbiao</creatorcontrib><creatorcontrib>Zheng, Yuanlei</creatorcontrib><creatorcontrib>Fan, Zhihao</creatorcontrib><creatorcontrib>Zhang, Xiaojin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Bai, Xiang</creatorcontrib><title>RSL-SQL: Robust Schema Linking in Text-to-SQL Generation</title><title>arXiv.org</title><description>Text-to-SQL generation aims to translate natural language questions into SQL statements. In Text-to-SQL based on large language models, schema linking is a widely adopted strategy to streamline the input for LLMs by selecting only relevant schema elements, therefore reducing noise and computational overhead. However, schema linking faces risks that require caution, including the potential omission of necessary elements and disruption of database structural integrity. To address these challenges, we propose a novel framework called RSL-SQL that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction. We improve the recall of pattern linking using forward and backward pruning methods, achieving a strict recall of 94% while reducing the number of input columns by 83%. Furthermore, it hedges the risk by voting between a full mode and a simplified mode enhanced with contextual information. Experiments on the BIRD and Spider benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on Spider using GPT-4o. Furthermore, our approach outperforms a series of GPT-4 based Text-to-SQL systems when adopting DeepSeek (much cheaper) with same intact prompts. Extensive analysis and ablation studies confirm the effectiveness of each component in our framework. The codes are available at https://github.com/Laqcce-cao/RSL-SQL.</description><subject>Ablation</subject><subject>Large language models</subject><subject>Query languages</subject><subject>Speech recognition</subject><subject>Strategy</subject><subject>Structural integrity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCAr20Q0O9LFSCMpPKi0uUQhOzkjNTVTwyczLzsxLV8jMUwhJrSjRLckHqVJwT81LLUosyczP42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGNDI2NLIwNDQ1Nj4lQBAGhQNEw</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Cao, Zhenbiao</creator><creator>Zheng, Yuanlei</creator><creator>Fan, Zhihao</creator><creator>Zhang, Xiaojin</creator><creator>Chen, Wei</creator><creator>Bai, Xiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241126</creationdate><title>RSL-SQL: Robust Schema Linking in Text-to-SQL Generation</title><author>Cao, Zhenbiao ; Zheng, Yuanlei ; Fan, Zhihao ; Zhang, Xiaojin ; Chen, Wei ; Bai, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31239201153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Large language models</topic><topic>Query languages</topic><topic>Speech recognition</topic><topic>Strategy</topic><topic>Structural integrity</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Zhenbiao</creatorcontrib><creatorcontrib>Zheng, Yuanlei</creatorcontrib><creatorcontrib>Fan, Zhihao</creatorcontrib><creatorcontrib>Zhang, Xiaojin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Bai, Xiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Zhenbiao</au><au>Zheng, Yuanlei</au><au>Fan, Zhihao</au><au>Zhang, Xiaojin</au><au>Chen, Wei</au><au>Bai, Xiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>RSL-SQL: Robust Schema Linking in Text-to-SQL Generation</atitle><jtitle>arXiv.org</jtitle><date>2024-11-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Text-to-SQL generation aims to translate natural language questions into SQL statements. In Text-to-SQL based on large language models, schema linking is a widely adopted strategy to streamline the input for LLMs by selecting only relevant schema elements, therefore reducing noise and computational overhead. However, schema linking faces risks that require caution, including the potential omission of necessary elements and disruption of database structural integrity. To address these challenges, we propose a novel framework called RSL-SQL that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction. We improve the recall of pattern linking using forward and backward pruning methods, achieving a strict recall of 94% while reducing the number of input columns by 83%. Furthermore, it hedges the risk by voting between a full mode and a simplified mode enhanced with contextual information. Experiments on the BIRD and Spider benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on Spider using GPT-4o. Furthermore, our approach outperforms a series of GPT-4 based Text-to-SQL systems when adopting DeepSeek (much cheaper) with same intact prompts. Extensive analysis and ablation studies confirm the effectiveness of each component in our framework. The codes are available at https://github.com/Laqcce-cao/RSL-SQL.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3123920115 |
source | Free E- Journals |
subjects | Ablation Large language models Query languages Speech recognition Strategy Structural integrity |
title | RSL-SQL: Robust Schema Linking in Text-to-SQL Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=RSL-SQL:%20Robust%20Schema%20Linking%20in%20Text-to-SQL%20Generation&rft.jtitle=arXiv.org&rft.au=Cao,%20Zhenbiao&rft.date=2024-11-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3123920115%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123920115&rft_id=info:pmid/&rfr_iscdi=true |