RSL-SQL: Robust Schema Linking in Text-to-SQL Generation

Text-to-SQL generation aims to translate natural language questions into SQL statements. In Text-to-SQL based on large language models, schema linking is a widely adopted strategy to streamline the input for LLMs by selecting only relevant schema elements, therefore reducing noise and computational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Cao, Zhenbiao, Zheng, Yuanlei, Fan, Zhihao, Zhang, Xiaojin, Chen, Wei, Bai, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cao, Zhenbiao
Zheng, Yuanlei
Fan, Zhihao
Zhang, Xiaojin
Chen, Wei
Bai, Xiang
description Text-to-SQL generation aims to translate natural language questions into SQL statements. In Text-to-SQL based on large language models, schema linking is a widely adopted strategy to streamline the input for LLMs by selecting only relevant schema elements, therefore reducing noise and computational overhead. However, schema linking faces risks that require caution, including the potential omission of necessary elements and disruption of database structural integrity. To address these challenges, we propose a novel framework called RSL-SQL that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction. We improve the recall of pattern linking using forward and backward pruning methods, achieving a strict recall of 94% while reducing the number of input columns by 83%. Furthermore, it hedges the risk by voting between a full mode and a simplified mode enhanced with contextual information. Experiments on the BIRD and Spider benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on Spider using GPT-4o. Furthermore, our approach outperforms a series of GPT-4 based Text-to-SQL systems when adopting DeepSeek (much cheaper) with same intact prompts. Extensive analysis and ablation studies confirm the effectiveness of each component in our framework. The codes are available at https://github.com/Laqcce-cao/RSL-SQL.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3123920115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123920115</sourcerecordid><originalsourceid>FETCH-proquest_journals_31239201153</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCAr20Q0O9LFSCMpPKi0uUQhOzkjNTVTwyczLzsxLV8jMUwhJrSjRLckHqVJwT81LLUosyczP42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGNDI2NLIwNDQ1Nj4lQBAGhQNEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123920115</pqid></control><display><type>article</type><title>RSL-SQL: Robust Schema Linking in Text-to-SQL Generation</title><source>Free E- Journals</source><creator>Cao, Zhenbiao ; Zheng, Yuanlei ; Fan, Zhihao ; Zhang, Xiaojin ; Chen, Wei ; Bai, Xiang</creator><creatorcontrib>Cao, Zhenbiao ; Zheng, Yuanlei ; Fan, Zhihao ; Zhang, Xiaojin ; Chen, Wei ; Bai, Xiang</creatorcontrib><description>Text-to-SQL generation aims to translate natural language questions into SQL statements. In Text-to-SQL based on large language models, schema linking is a widely adopted strategy to streamline the input for LLMs by selecting only relevant schema elements, therefore reducing noise and computational overhead. However, schema linking faces risks that require caution, including the potential omission of necessary elements and disruption of database structural integrity. To address these challenges, we propose a novel framework called RSL-SQL that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction. We improve the recall of pattern linking using forward and backward pruning methods, achieving a strict recall of 94% while reducing the number of input columns by 83%. Furthermore, it hedges the risk by voting between a full mode and a simplified mode enhanced with contextual information. Experiments on the BIRD and Spider benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on Spider using GPT-4o. Furthermore, our approach outperforms a series of GPT-4 based Text-to-SQL systems when adopting DeepSeek (much cheaper) with same intact prompts. Extensive analysis and ablation studies confirm the effectiveness of each component in our framework. The codes are available at https://github.com/Laqcce-cao/RSL-SQL.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ablation ; Large language models ; Query languages ; Speech recognition ; Strategy ; Structural integrity</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cao, Zhenbiao</creatorcontrib><creatorcontrib>Zheng, Yuanlei</creatorcontrib><creatorcontrib>Fan, Zhihao</creatorcontrib><creatorcontrib>Zhang, Xiaojin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Bai, Xiang</creatorcontrib><title>RSL-SQL: Robust Schema Linking in Text-to-SQL Generation</title><title>arXiv.org</title><description>Text-to-SQL generation aims to translate natural language questions into SQL statements. In Text-to-SQL based on large language models, schema linking is a widely adopted strategy to streamline the input for LLMs by selecting only relevant schema elements, therefore reducing noise and computational overhead. However, schema linking faces risks that require caution, including the potential omission of necessary elements and disruption of database structural integrity. To address these challenges, we propose a novel framework called RSL-SQL that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction. We improve the recall of pattern linking using forward and backward pruning methods, achieving a strict recall of 94% while reducing the number of input columns by 83%. Furthermore, it hedges the risk by voting between a full mode and a simplified mode enhanced with contextual information. Experiments on the BIRD and Spider benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on Spider using GPT-4o. Furthermore, our approach outperforms a series of GPT-4 based Text-to-SQL systems when adopting DeepSeek (much cheaper) with same intact prompts. Extensive analysis and ablation studies confirm the effectiveness of each component in our framework. The codes are available at https://github.com/Laqcce-cao/RSL-SQL.</description><subject>Ablation</subject><subject>Large language models</subject><subject>Query languages</subject><subject>Speech recognition</subject><subject>Strategy</subject><subject>Structural integrity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCAr20Q0O9LFSCMpPKi0uUQhOzkjNTVTwyczLzsxLV8jMUwhJrSjRLckHqVJwT81LLUosyczP42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGNDI2NLIwNDQ1Nj4lQBAGhQNEw</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Cao, Zhenbiao</creator><creator>Zheng, Yuanlei</creator><creator>Fan, Zhihao</creator><creator>Zhang, Xiaojin</creator><creator>Chen, Wei</creator><creator>Bai, Xiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241126</creationdate><title>RSL-SQL: Robust Schema Linking in Text-to-SQL Generation</title><author>Cao, Zhenbiao ; Zheng, Yuanlei ; Fan, Zhihao ; Zhang, Xiaojin ; Chen, Wei ; Bai, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31239201153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Large language models</topic><topic>Query languages</topic><topic>Speech recognition</topic><topic>Strategy</topic><topic>Structural integrity</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Zhenbiao</creatorcontrib><creatorcontrib>Zheng, Yuanlei</creatorcontrib><creatorcontrib>Fan, Zhihao</creatorcontrib><creatorcontrib>Zhang, Xiaojin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Bai, Xiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Zhenbiao</au><au>Zheng, Yuanlei</au><au>Fan, Zhihao</au><au>Zhang, Xiaojin</au><au>Chen, Wei</au><au>Bai, Xiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>RSL-SQL: Robust Schema Linking in Text-to-SQL Generation</atitle><jtitle>arXiv.org</jtitle><date>2024-11-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Text-to-SQL generation aims to translate natural language questions into SQL statements. In Text-to-SQL based on large language models, schema linking is a widely adopted strategy to streamline the input for LLMs by selecting only relevant schema elements, therefore reducing noise and computational overhead. However, schema linking faces risks that require caution, including the potential omission of necessary elements and disruption of database structural integrity. To address these challenges, we propose a novel framework called RSL-SQL that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction. We improve the recall of pattern linking using forward and backward pruning methods, achieving a strict recall of 94% while reducing the number of input columns by 83%. Furthermore, it hedges the risk by voting between a full mode and a simplified mode enhanced with contextual information. Experiments on the BIRD and Spider benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on Spider using GPT-4o. Furthermore, our approach outperforms a series of GPT-4 based Text-to-SQL systems when adopting DeepSeek (much cheaper) with same intact prompts. Extensive analysis and ablation studies confirm the effectiveness of each component in our framework. The codes are available at https://github.com/Laqcce-cao/RSL-SQL.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3123920115
source Free E- Journals
subjects Ablation
Large language models
Query languages
Speech recognition
Strategy
Structural integrity
title RSL-SQL: Robust Schema Linking in Text-to-SQL Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=RSL-SQL:%20Robust%20Schema%20Linking%20in%20Text-to-SQL%20Generation&rft.jtitle=arXiv.org&rft.au=Cao,%20Zhenbiao&rft.date=2024-11-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3123920115%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123920115&rft_id=info:pmid/&rfr_iscdi=true