The effects of pre-existing dislocations on the mechanical properties of iron

In atomistic simulations, pre-existing dislocations have been reported to reduce the yield stress compared to the ideal crystals. However, the underlying physics behind yield stress reduction is still unrevealed, which hammers the design of advanced materials. Here, large-scale molecular dynamics si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2024-10, Vol.14 (10), p.105334-105334-7
Hauptverfasser: Ding, Zhigang, Liu, Qihang, Kan, Jincheng, Sun, Yincan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105334-7
container_issue 10
container_start_page 105334
container_title AIP advances
container_volume 14
creator Ding, Zhigang
Liu, Qihang
Kan, Jincheng
Sun, Yincan
description In atomistic simulations, pre-existing dislocations have been reported to reduce the yield stress compared to the ideal crystals. However, the underlying physics behind yield stress reduction is still unrevealed, which hammers the design of advanced materials. Here, large-scale molecular dynamics simulations are carried out to investigate the influence of pre-existing dislocations on the mechanical properties of body-centered cubic Fe crystals with dislocation, twinning, and phase transformation-dominated deformation mechanisms. The results suggest that the overestimated yield stress of all the crystals is significantly reduced by increasing dislocation numbers and obtaining closer flow stress on the uniform plastic deformation stage. This reduction in yield stress can be attributed to the lower thermo-dynamical driving force required to activate existing dislocations in pre-existing dislocation crystals than that to nucleating new dislocations in ideal crystals. Furthermore, pre-existing dislocations inhibited the phase transformation-dominated deformation process, but the twinning/dislocation-dominated deformation process still exhibited its original deformation mechanism.
doi_str_mv 10.1063/5.0214386
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3123905940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_763ddf56a82746a28fd3e43de5c69698</doaj_id><sourcerecordid>3123905940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-8593aea9448cef41860eda32ba78902ef769bc0f3f396ae002373b0dafbfeda83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsGgP_oMFTwpbs0k2mxyl-FGoeKnnkE0mbUq7qUkK-u9Nu0U8mcuEmWfemXmL4qZGkxox8tBMEK4p4eysGOG64RXBmJ3_-V8W4xjXKD8qasTpqHhbrKAEa0GnWHpb7gJU8OVicv2yNC5uvFbJ-T4X-zJldgt6pXqn1SazfgchOTh2uuD76-LCqk2E8SleFR_PT4vpazV_f5lNH-eVxpykijeCKFCCUq7B0pozBEYR3KmWC4TBtkx0GlliiWAKEMKkJR0yynY2g5xcFbNB13i1lrvgtip8S6-cPCZ8WEqVF9MbkC0jxtiGKY5byhTm1hCgxECjmWDioHU7aOVzPvcQk1z7fejz-pLUmAjUCIoydTdQOvgYA9jfqTWSB_NlI0_mZ_Z-YKN26ejeP_APkXqDEQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123905940</pqid></control><display><type>article</type><title>The effects of pre-existing dislocations on the mechanical properties of iron</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Ding, Zhigang ; Liu, Qihang ; Kan, Jincheng ; Sun, Yincan</creator><creatorcontrib>Ding, Zhigang ; Liu, Qihang ; Kan, Jincheng ; Sun, Yincan</creatorcontrib><description>In atomistic simulations, pre-existing dislocations have been reported to reduce the yield stress compared to the ideal crystals. However, the underlying physics behind yield stress reduction is still unrevealed, which hammers the design of advanced materials. Here, large-scale molecular dynamics simulations are carried out to investigate the influence of pre-existing dislocations on the mechanical properties of body-centered cubic Fe crystals with dislocation, twinning, and phase transformation-dominated deformation mechanisms. The results suggest that the overestimated yield stress of all the crystals is significantly reduced by increasing dislocation numbers and obtaining closer flow stress on the uniform plastic deformation stage. This reduction in yield stress can be attributed to the lower thermo-dynamical driving force required to activate existing dislocations in pre-existing dislocation crystals than that to nucleating new dislocations in ideal crystals. Furthermore, pre-existing dislocations inhibited the phase transformation-dominated deformation process, but the twinning/dislocation-dominated deformation process still exhibited its original deformation mechanism.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0214386</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Crystal dislocations ; Deformation mechanisms ; Dynamic mechanical properties ; Iron ; Mechanical properties ; Mechanical twinning ; Molecular dynamics ; Phase transitions ; Plastic deformation ; Yield strength ; Yield stress</subject><ispartof>AIP advances, 2024-10, Vol.14 (10), p.105334-105334-7</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-8593aea9448cef41860eda32ba78902ef769bc0f3f396ae002373b0dafbfeda83</cites><orcidid>0000-0003-4192-9492 ; 0009-0004-4769-1600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2101,27923,27924</link.rule.ids></links><search><creatorcontrib>Ding, Zhigang</creatorcontrib><creatorcontrib>Liu, Qihang</creatorcontrib><creatorcontrib>Kan, Jincheng</creatorcontrib><creatorcontrib>Sun, Yincan</creatorcontrib><title>The effects of pre-existing dislocations on the mechanical properties of iron</title><title>AIP advances</title><description>In atomistic simulations, pre-existing dislocations have been reported to reduce the yield stress compared to the ideal crystals. However, the underlying physics behind yield stress reduction is still unrevealed, which hammers the design of advanced materials. Here, large-scale molecular dynamics simulations are carried out to investigate the influence of pre-existing dislocations on the mechanical properties of body-centered cubic Fe crystals with dislocation, twinning, and phase transformation-dominated deformation mechanisms. The results suggest that the overestimated yield stress of all the crystals is significantly reduced by increasing dislocation numbers and obtaining closer flow stress on the uniform plastic deformation stage. This reduction in yield stress can be attributed to the lower thermo-dynamical driving force required to activate existing dislocations in pre-existing dislocation crystals than that to nucleating new dislocations in ideal crystals. Furthermore, pre-existing dislocations inhibited the phase transformation-dominated deformation process, but the twinning/dislocation-dominated deformation process still exhibited its original deformation mechanism.</description><subject>Crystal dislocations</subject><subject>Deformation mechanisms</subject><subject>Dynamic mechanical properties</subject><subject>Iron</subject><subject>Mechanical properties</subject><subject>Mechanical twinning</subject><subject>Molecular dynamics</subject><subject>Phase transitions</subject><subject>Plastic deformation</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEQhhdRsGgP_oMFTwpbs0k2mxyl-FGoeKnnkE0mbUq7qUkK-u9Nu0U8mcuEmWfemXmL4qZGkxox8tBMEK4p4eysGOG64RXBmJ3_-V8W4xjXKD8qasTpqHhbrKAEa0GnWHpb7gJU8OVicv2yNC5uvFbJ-T4X-zJldgt6pXqn1SazfgchOTh2uuD76-LCqk2E8SleFR_PT4vpazV_f5lNH-eVxpykijeCKFCCUq7B0pozBEYR3KmWC4TBtkx0GlliiWAKEMKkJR0yynY2g5xcFbNB13i1lrvgtip8S6-cPCZ8WEqVF9MbkC0jxtiGKY5byhTm1hCgxECjmWDioHU7aOVzPvcQk1z7fejz-pLUmAjUCIoydTdQOvgYA9jfqTWSB_NlI0_mZ_Z-YKN26ejeP_APkXqDEQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Ding, Zhigang</creator><creator>Liu, Qihang</creator><creator>Kan, Jincheng</creator><creator>Sun, Yincan</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4192-9492</orcidid><orcidid>https://orcid.org/0009-0004-4769-1600</orcidid></search><sort><creationdate>20241001</creationdate><title>The effects of pre-existing dislocations on the mechanical properties of iron</title><author>Ding, Zhigang ; Liu, Qihang ; Kan, Jincheng ; Sun, Yincan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-8593aea9448cef41860eda32ba78902ef769bc0f3f396ae002373b0dafbfeda83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crystal dislocations</topic><topic>Deformation mechanisms</topic><topic>Dynamic mechanical properties</topic><topic>Iron</topic><topic>Mechanical properties</topic><topic>Mechanical twinning</topic><topic>Molecular dynamics</topic><topic>Phase transitions</topic><topic>Plastic deformation</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Zhigang</creatorcontrib><creatorcontrib>Liu, Qihang</creatorcontrib><creatorcontrib>Kan, Jincheng</creatorcontrib><creatorcontrib>Sun, Yincan</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Zhigang</au><au>Liu, Qihang</au><au>Kan, Jincheng</au><au>Sun, Yincan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of pre-existing dislocations on the mechanical properties of iron</atitle><jtitle>AIP advances</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>10</issue><spage>105334</spage><epage>105334-7</epage><pages>105334-105334-7</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>In atomistic simulations, pre-existing dislocations have been reported to reduce the yield stress compared to the ideal crystals. However, the underlying physics behind yield stress reduction is still unrevealed, which hammers the design of advanced materials. Here, large-scale molecular dynamics simulations are carried out to investigate the influence of pre-existing dislocations on the mechanical properties of body-centered cubic Fe crystals with dislocation, twinning, and phase transformation-dominated deformation mechanisms. The results suggest that the overestimated yield stress of all the crystals is significantly reduced by increasing dislocation numbers and obtaining closer flow stress on the uniform plastic deformation stage. This reduction in yield stress can be attributed to the lower thermo-dynamical driving force required to activate existing dislocations in pre-existing dislocation crystals than that to nucleating new dislocations in ideal crystals. Furthermore, pre-existing dislocations inhibited the phase transformation-dominated deformation process, but the twinning/dislocation-dominated deformation process still exhibited its original deformation mechanism.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0214386</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4192-9492</orcidid><orcidid>https://orcid.org/0009-0004-4769-1600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2024-10, Vol.14 (10), p.105334-105334-7
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_3123905940
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Crystal dislocations
Deformation mechanisms
Dynamic mechanical properties
Iron
Mechanical properties
Mechanical twinning
Molecular dynamics
Phase transitions
Plastic deformation
Yield strength
Yield stress
title The effects of pre-existing dislocations on the mechanical properties of iron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20pre-existing%20dislocations%20on%20the%20mechanical%20properties%20of%20iron&rft.jtitle=AIP%20advances&rft.au=Ding,%20Zhigang&rft.date=2024-10-01&rft.volume=14&rft.issue=10&rft.spage=105334&rft.epage=105334-7&rft.pages=105334-105334-7&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0214386&rft_dat=%3Cproquest_scita%3E3123905940%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123905940&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_763ddf56a82746a28fd3e43de5c69698&rfr_iscdi=true