(010) β-(Alx, Ga1−x)2O3 growth using tritertiarybutylaluminum as Al gas precursor via hybrid molecular beam epitaxy

We report the epitaxial growth of (010) β-(AlxGa1−x)2O3 using tritertiarybutylaluminum (TTBAl) as an aluminum gas precursor in a hybrid molecular beam epitaxy (h-MBE) system. In conventional MBE systems, a thermal effusion cell is typically used to supply Al. However, in an oxide MBE system, using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-10, Vol.125 (16)
Hauptverfasser: Wen, Zhuoqun, Zhai, Xin, Khan, Kamruzzaman, Odabasi, Oguz, Kim, Mijung, Ahmadi, Elaheh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page
container_title Applied physics letters
container_volume 125
creator Wen, Zhuoqun
Zhai, Xin
Khan, Kamruzzaman
Odabasi, Oguz
Kim, Mijung
Ahmadi, Elaheh
description We report the epitaxial growth of (010) β-(AlxGa1−x)2O3 using tritertiarybutylaluminum (TTBAl) as an aluminum gas precursor in a hybrid molecular beam epitaxy (h-MBE) system. In conventional MBE systems, a thermal effusion cell is typically used to supply Al. However, in an oxide MBE system, using a conventional Al effusion cell can cause difficulties due to the oxidation of the Al source during growth. This often requires breaking the vacuum frequently to reload Al. Our approach utilizes TTBAl, a gaseous Al source, via a h-MBE to circumvent the oxidation issues associated with traditional solid Al sources. We investigated the growth conditions of β-(AlxGa1−x)2O3, varying TTBAl supply and growth temperature. For this purpose, we utilized both elemental Ga and Ga-suboxide as Ga precursors. Controllable and repeatable growth of β-(AlxGa1−x)2O3 with Al compositions ranging from 1% to 25% was achieved. The impurity incorporation and crystal quality of the resulting β-(AlxGa1−x)2O3 films were also studied. Using TTBAl as a gaseous precursor in h-MBE has proven to maintain stable Al supply, enabling the controlled growth of high-quality β-(AlxGa1−x)2O3 films.
doi_str_mv 10.1063/5.0227366
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3123905203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123905203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-5f3ddd57802527c787d2cb23b4d470d90923535eef39d08a724595498a2b58f63</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqWw4AaW2LSIFNsTx8myqqAgVeoG1pGTOK2r_BTbKc0NWHMUDsIhOAlG7ZrVpxk9zeh7CF1TMqEkgns-IYwJiKITNKBEiAAojU_RgBACQZRweo4urN34kTOAAdqNCCVj_P0VjKbV_g7PJf35-NyP2RLwyrTvbo07q5sVdkY7ZZyWps8611ey6mrddDWWFk8rvPKxNSrvjG0N3mmJ131mdIHrtvLbShqcKVljtdVO7vtLdFbKyqqrYw7R6-PDy-wpWCznz7PpIshpzFzASyiKgouYMM5ELmJRsDxjkIVFKEiRkIQBB65UCUlBYilYyBMeJrFkGY_LCIbo5nB3a9q3TlmXbtrONP5lCpRB4i0Q8NT4QOWmtdaoMt0aXfumKSXpn9aUp0etnr09sDb3TZxum3_gXx9fdxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123905203</pqid></control><display><type>article</type><title>(010) β-(Alx, Ga1−x)2O3 growth using tritertiarybutylaluminum as Al gas precursor via hybrid molecular beam epitaxy</title><source>AIP Journals Complete</source><creator>Wen, Zhuoqun ; Zhai, Xin ; Khan, Kamruzzaman ; Odabasi, Oguz ; Kim, Mijung ; Ahmadi, Elaheh</creator><creatorcontrib>Wen, Zhuoqun ; Zhai, Xin ; Khan, Kamruzzaman ; Odabasi, Oguz ; Kim, Mijung ; Ahmadi, Elaheh</creatorcontrib><description>We report the epitaxial growth of (010) β-(AlxGa1−x)2O3 using tritertiarybutylaluminum (TTBAl) as an aluminum gas precursor in a hybrid molecular beam epitaxy (h-MBE) system. In conventional MBE systems, a thermal effusion cell is typically used to supply Al. However, in an oxide MBE system, using a conventional Al effusion cell can cause difficulties due to the oxidation of the Al source during growth. This often requires breaking the vacuum frequently to reload Al. Our approach utilizes TTBAl, a gaseous Al source, via a h-MBE to circumvent the oxidation issues associated with traditional solid Al sources. We investigated the growth conditions of β-(AlxGa1−x)2O3, varying TTBAl supply and growth temperature. For this purpose, we utilized both elemental Ga and Ga-suboxide as Ga precursors. Controllable and repeatable growth of β-(AlxGa1−x)2O3 with Al compositions ranging from 1% to 25% was achieved. The impurity incorporation and crystal quality of the resulting β-(AlxGa1−x)2O3 films were also studied. Using TTBAl as a gaseous precursor in h-MBE has proven to maintain stable Al supply, enabling the controlled growth of high-quality β-(AlxGa1−x)2O3 films.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0227366</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Controllability ; Epitaxial growth ; Gallium ; Molecular beam epitaxy ; Oxidation ; Precursors</subject><ispartof>Applied physics letters, 2024-10, Vol.125 (16)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-5f3ddd57802527c787d2cb23b4d470d90923535eef39d08a724595498a2b58f63</cites><orcidid>0000-0002-2002-1488 ; 0000-0001-7631-7977 ; 0000-0002-8330-9366 ; 0000-0002-8612-1609 ; 0000-0002-0332-4700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0227366$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Wen, Zhuoqun</creatorcontrib><creatorcontrib>Zhai, Xin</creatorcontrib><creatorcontrib>Khan, Kamruzzaman</creatorcontrib><creatorcontrib>Odabasi, Oguz</creatorcontrib><creatorcontrib>Kim, Mijung</creatorcontrib><creatorcontrib>Ahmadi, Elaheh</creatorcontrib><title>(010) β-(Alx, Ga1−x)2O3 growth using tritertiarybutylaluminum as Al gas precursor via hybrid molecular beam epitaxy</title><title>Applied physics letters</title><description>We report the epitaxial growth of (010) β-(AlxGa1−x)2O3 using tritertiarybutylaluminum (TTBAl) as an aluminum gas precursor in a hybrid molecular beam epitaxy (h-MBE) system. In conventional MBE systems, a thermal effusion cell is typically used to supply Al. However, in an oxide MBE system, using a conventional Al effusion cell can cause difficulties due to the oxidation of the Al source during growth. This often requires breaking the vacuum frequently to reload Al. Our approach utilizes TTBAl, a gaseous Al source, via a h-MBE to circumvent the oxidation issues associated with traditional solid Al sources. We investigated the growth conditions of β-(AlxGa1−x)2O3, varying TTBAl supply and growth temperature. For this purpose, we utilized both elemental Ga and Ga-suboxide as Ga precursors. Controllable and repeatable growth of β-(AlxGa1−x)2O3 with Al compositions ranging from 1% to 25% was achieved. The impurity incorporation and crystal quality of the resulting β-(AlxGa1−x)2O3 films were also studied. Using TTBAl as a gaseous precursor in h-MBE has proven to maintain stable Al supply, enabling the controlled growth of high-quality β-(AlxGa1−x)2O3 films.</description><subject>Controllability</subject><subject>Epitaxial growth</subject><subject>Gallium</subject><subject>Molecular beam epitaxy</subject><subject>Oxidation</subject><subject>Precursors</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqWw4AaW2LSIFNsTx8myqqAgVeoG1pGTOK2r_BTbKc0NWHMUDsIhOAlG7ZrVpxk9zeh7CF1TMqEkgns-IYwJiKITNKBEiAAojU_RgBACQZRweo4urN34kTOAAdqNCCVj_P0VjKbV_g7PJf35-NyP2RLwyrTvbo07q5sVdkY7ZZyWps8611ey6mrddDWWFk8rvPKxNSrvjG0N3mmJ131mdIHrtvLbShqcKVljtdVO7vtLdFbKyqqrYw7R6-PDy-wpWCznz7PpIshpzFzASyiKgouYMM5ELmJRsDxjkIVFKEiRkIQBB65UCUlBYilYyBMeJrFkGY_LCIbo5nB3a9q3TlmXbtrONP5lCpRB4i0Q8NT4QOWmtdaoMt0aXfumKSXpn9aUp0etnr09sDb3TZxum3_gXx9fdxo</recordid><startdate>20241014</startdate><enddate>20241014</enddate><creator>Wen, Zhuoqun</creator><creator>Zhai, Xin</creator><creator>Khan, Kamruzzaman</creator><creator>Odabasi, Oguz</creator><creator>Kim, Mijung</creator><creator>Ahmadi, Elaheh</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2002-1488</orcidid><orcidid>https://orcid.org/0000-0001-7631-7977</orcidid><orcidid>https://orcid.org/0000-0002-8330-9366</orcidid><orcidid>https://orcid.org/0000-0002-8612-1609</orcidid><orcidid>https://orcid.org/0000-0002-0332-4700</orcidid></search><sort><creationdate>20241014</creationdate><title>(010) β-(Alx, Ga1−x)2O3 growth using tritertiarybutylaluminum as Al gas precursor via hybrid molecular beam epitaxy</title><author>Wen, Zhuoqun ; Zhai, Xin ; Khan, Kamruzzaman ; Odabasi, Oguz ; Kim, Mijung ; Ahmadi, Elaheh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-5f3ddd57802527c787d2cb23b4d470d90923535eef39d08a724595498a2b58f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Controllability</topic><topic>Epitaxial growth</topic><topic>Gallium</topic><topic>Molecular beam epitaxy</topic><topic>Oxidation</topic><topic>Precursors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Zhuoqun</creatorcontrib><creatorcontrib>Zhai, Xin</creatorcontrib><creatorcontrib>Khan, Kamruzzaman</creatorcontrib><creatorcontrib>Odabasi, Oguz</creatorcontrib><creatorcontrib>Kim, Mijung</creatorcontrib><creatorcontrib>Ahmadi, Elaheh</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Zhuoqun</au><au>Zhai, Xin</au><au>Khan, Kamruzzaman</au><au>Odabasi, Oguz</au><au>Kim, Mijung</au><au>Ahmadi, Elaheh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(010) β-(Alx, Ga1−x)2O3 growth using tritertiarybutylaluminum as Al gas precursor via hybrid molecular beam epitaxy</atitle><jtitle>Applied physics letters</jtitle><date>2024-10-14</date><risdate>2024</risdate><volume>125</volume><issue>16</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report the epitaxial growth of (010) β-(AlxGa1−x)2O3 using tritertiarybutylaluminum (TTBAl) as an aluminum gas precursor in a hybrid molecular beam epitaxy (h-MBE) system. In conventional MBE systems, a thermal effusion cell is typically used to supply Al. However, in an oxide MBE system, using a conventional Al effusion cell can cause difficulties due to the oxidation of the Al source during growth. This often requires breaking the vacuum frequently to reload Al. Our approach utilizes TTBAl, a gaseous Al source, via a h-MBE to circumvent the oxidation issues associated with traditional solid Al sources. We investigated the growth conditions of β-(AlxGa1−x)2O3, varying TTBAl supply and growth temperature. For this purpose, we utilized both elemental Ga and Ga-suboxide as Ga precursors. Controllable and repeatable growth of β-(AlxGa1−x)2O3 with Al compositions ranging from 1% to 25% was achieved. The impurity incorporation and crystal quality of the resulting β-(AlxGa1−x)2O3 films were also studied. Using TTBAl as a gaseous precursor in h-MBE has proven to maintain stable Al supply, enabling the controlled growth of high-quality β-(AlxGa1−x)2O3 films.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0227366</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2002-1488</orcidid><orcidid>https://orcid.org/0000-0001-7631-7977</orcidid><orcidid>https://orcid.org/0000-0002-8330-9366</orcidid><orcidid>https://orcid.org/0000-0002-8612-1609</orcidid><orcidid>https://orcid.org/0000-0002-0332-4700</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-10, Vol.125 (16)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_3123905203
source AIP Journals Complete
subjects Controllability
Epitaxial growth
Gallium
Molecular beam epitaxy
Oxidation
Precursors
title (010) β-(Alx, Ga1−x)2O3 growth using tritertiarybutylaluminum as Al gas precursor via hybrid molecular beam epitaxy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(010)%20%CE%B2-(Alx,%20Ga1%E2%88%92x)2O3%20growth%20using%20tritertiarybutylaluminum%20as%20Al%20gas%20precursor%20via%20hybrid%20molecular%20beam%20epitaxy&rft.jtitle=Applied%20physics%20letters&rft.au=Wen,%20Zhuoqun&rft.date=2024-10-14&rft.volume=125&rft.issue=16&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0227366&rft_dat=%3Cproquest_scita%3E3123905203%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123905203&rft_id=info:pmid/&rfr_iscdi=true