Multi‐Functional Interface Passivation via Guanidinium Iodide Enables Efficient Perovskite Solar Cells
Perovskite solar cells have become a leading contender in next‐generation photovoltaic technologies due to their high efficiency and low‐cost potential. Managing the deep defects present effectively in the crystal lattice and at the interfaces is essential for enhancing the performance and longevity...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-11, Vol.34 (45), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 45 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Su, Jian Hu, Tao Chen, Xin Zhang, Xianwei Fang, Ning Hao, Jican Guo, Huafei Jiang, Sai Gu, Ding Qiu, Jianhua Zhang, Han Zhou, Ziyao |
description | Perovskite solar cells have become a leading contender in next‐generation photovoltaic technologies due to their high efficiency and low‐cost potential. Managing the deep defects present effectively in the crystal lattice and at the interfaces is essential for enhancing the performance and longevity of perovskite solar cells. Here, perovskite's crystallization modulation and interfacial defect passivation are achieved by developing a guanidinium iodide (GAI)‐based surface passivation strategy. The integration of GAI passivates the grain boundaries, leading to a perovskite thin film with a smoother and more uniform grain distribution, facilitating charge carrier transport. Notably, the ammonium group, unsaturated nitrogen atoms, and iodide ions in GAI can collectively repair the surface defects of perovskite through various pathways, effectively suppressing non‐radiative recombination, thereby enhancing the photovoltaic performance of the device. Ultimately, the champion device treated with GAI achieves a power conversion efficiency (PCE) of 23.02% and demonstrates similar ambient stability under unencapsulated conditions. These findings underscore the effectiveness of GAI passivation as a strategy to balance the improvement of the performance and stability of perovskite solar cells.
A multi‐functional perovskite interface passivation strategy based on guanidinium iodide is proposed. The guanidinium iodide, with its ammonium group, unsaturated nitrogen atoms, and iodide ions, synergistically repairs the perovskite interface defects through various pathways, passivates the grain boundaries, effectively suppresses non‐radiative recombination, and significantly improves the photovoltaic performance of the device. |
doi_str_mv | 10.1002/adfm.202406324 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3123691747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123691747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2024-8618c5bfad8d4542eab6fb71a49961ddacf6f612ccb179d9a3c9a10028840d253</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXrUkmzcwsS21rocWCCu7CnfxgajpTk5lKdz6Cz-iT2KFSl67u5fKdwz0HoWtK-pQQdgvarvuMME5EwvgJ6lBBRS8hLDs97vTlHF3EuCKEpmnCO-h10fjafX9-TZpS1a4qweNZWZtgQRm8hBjdFto73jrA0wZKp13pmjWeVdppg8clFN5EPLbWKWfKGi9NqLbxzdUGP1YeAh4Z7-MlOrPgo7n6nV30PBk_je5784fpbDSc91T7ei8TNFODwoLONB9wZqAQtkgp8DwXVGtQVlhBmVIFTXOdQ6JyaONnGSeaDZIuujn4bkL13phYy1XVhH2sKBPKEpHTlKd7qn-gVKhiDMbKTXBrCDtJiWztZNumPLa5F-QHwYfzZvcPLYd3k8Wf9gdyensi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123691747</pqid></control><display><type>article</type><title>Multi‐Functional Interface Passivation via Guanidinium Iodide Enables Efficient Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Su, Jian ; Hu, Tao ; Chen, Xin ; Zhang, Xianwei ; Fang, Ning ; Hao, Jican ; Guo, Huafei ; Jiang, Sai ; Gu, Ding ; Qiu, Jianhua ; Zhang, Han ; Zhou, Ziyao</creator><creatorcontrib>Su, Jian ; Hu, Tao ; Chen, Xin ; Zhang, Xianwei ; Fang, Ning ; Hao, Jican ; Guo, Huafei ; Jiang, Sai ; Gu, Ding ; Qiu, Jianhua ; Zhang, Han ; Zhou, Ziyao</creatorcontrib><description>Perovskite solar cells have become a leading contender in next‐generation photovoltaic technologies due to their high efficiency and low‐cost potential. Managing the deep defects present effectively in the crystal lattice and at the interfaces is essential for enhancing the performance and longevity of perovskite solar cells. Here, perovskite's crystallization modulation and interfacial defect passivation are achieved by developing a guanidinium iodide (GAI)‐based surface passivation strategy. The integration of GAI passivates the grain boundaries, leading to a perovskite thin film with a smoother and more uniform grain distribution, facilitating charge carrier transport. Notably, the ammonium group, unsaturated nitrogen atoms, and iodide ions in GAI can collectively repair the surface defects of perovskite through various pathways, effectively suppressing non‐radiative recombination, thereby enhancing the photovoltaic performance of the device. Ultimately, the champion device treated with GAI achieves a power conversion efficiency (PCE) of 23.02% and demonstrates similar ambient stability under unencapsulated conditions. These findings underscore the effectiveness of GAI passivation as a strategy to balance the improvement of the performance and stability of perovskite solar cells.
A multi‐functional perovskite interface passivation strategy based on guanidinium iodide is proposed. The guanidinium iodide, with its ammonium group, unsaturated nitrogen atoms, and iodide ions, synergistically repairs the perovskite interface defects through various pathways, passivates the grain boundaries, effectively suppresses non‐radiative recombination, and significantly improves the photovoltaic performance of the device.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202406324</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carrier transport ; Crystal defects ; Crystal lattices ; Crystallization ; Current carriers ; Energy conversion efficiency ; Grain boundaries ; guanidinium ; interface passivation ; Nitrogen atoms ; non‐radiative recombination ; Passivity ; Performance enhancement ; Perovskites ; Photovoltaic cells ; Radiative recombination ; Solar cells ; Stability ; Surface defects ; Thin films</subject><ispartof>Advanced functional materials, 2024-11, Vol.34 (45), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2024-8618c5bfad8d4542eab6fb71a49961ddacf6f612ccb179d9a3c9a10028840d253</cites><orcidid>0009-0002-9604-7403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202406324$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202406324$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Su, Jian</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zhang, Xianwei</creatorcontrib><creatorcontrib>Fang, Ning</creatorcontrib><creatorcontrib>Hao, Jican</creatorcontrib><creatorcontrib>Guo, Huafei</creatorcontrib><creatorcontrib>Jiang, Sai</creatorcontrib><creatorcontrib>Gu, Ding</creatorcontrib><creatorcontrib>Qiu, Jianhua</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Zhou, Ziyao</creatorcontrib><title>Multi‐Functional Interface Passivation via Guanidinium Iodide Enables Efficient Perovskite Solar Cells</title><title>Advanced functional materials</title><description>Perovskite solar cells have become a leading contender in next‐generation photovoltaic technologies due to their high efficiency and low‐cost potential. Managing the deep defects present effectively in the crystal lattice and at the interfaces is essential for enhancing the performance and longevity of perovskite solar cells. Here, perovskite's crystallization modulation and interfacial defect passivation are achieved by developing a guanidinium iodide (GAI)‐based surface passivation strategy. The integration of GAI passivates the grain boundaries, leading to a perovskite thin film with a smoother and more uniform grain distribution, facilitating charge carrier transport. Notably, the ammonium group, unsaturated nitrogen atoms, and iodide ions in GAI can collectively repair the surface defects of perovskite through various pathways, effectively suppressing non‐radiative recombination, thereby enhancing the photovoltaic performance of the device. Ultimately, the champion device treated with GAI achieves a power conversion efficiency (PCE) of 23.02% and demonstrates similar ambient stability under unencapsulated conditions. These findings underscore the effectiveness of GAI passivation as a strategy to balance the improvement of the performance and stability of perovskite solar cells.
A multi‐functional perovskite interface passivation strategy based on guanidinium iodide is proposed. The guanidinium iodide, with its ammonium group, unsaturated nitrogen atoms, and iodide ions, synergistically repairs the perovskite interface defects through various pathways, passivates the grain boundaries, effectively suppresses non‐radiative recombination, and significantly improves the photovoltaic performance of the device.</description><subject>Carrier transport</subject><subject>Crystal defects</subject><subject>Crystal lattices</subject><subject>Crystallization</subject><subject>Current carriers</subject><subject>Energy conversion efficiency</subject><subject>Grain boundaries</subject><subject>guanidinium</subject><subject>interface passivation</subject><subject>Nitrogen atoms</subject><subject>non‐radiative recombination</subject><subject>Passivity</subject><subject>Performance enhancement</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Radiative recombination</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Surface defects</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wHXrUkmzcwsS21rocWCCu7CnfxgajpTk5lKdz6Cz-iT2KFSl67u5fKdwz0HoWtK-pQQdgvarvuMME5EwvgJ6lBBRS8hLDs97vTlHF3EuCKEpmnCO-h10fjafX9-TZpS1a4qweNZWZtgQRm8hBjdFto73jrA0wZKp13pmjWeVdppg8clFN5EPLbWKWfKGi9NqLbxzdUGP1YeAh4Z7-MlOrPgo7n6nV30PBk_je5784fpbDSc91T7ei8TNFODwoLONB9wZqAQtkgp8DwXVGtQVlhBmVIFTXOdQ6JyaONnGSeaDZIuujn4bkL13phYy1XVhH2sKBPKEpHTlKd7qn-gVKhiDMbKTXBrCDtJiWztZNumPLa5F-QHwYfzZvcPLYd3k8Wf9gdyensi</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Su, Jian</creator><creator>Hu, Tao</creator><creator>Chen, Xin</creator><creator>Zhang, Xianwei</creator><creator>Fang, Ning</creator><creator>Hao, Jican</creator><creator>Guo, Huafei</creator><creator>Jiang, Sai</creator><creator>Gu, Ding</creator><creator>Qiu, Jianhua</creator><creator>Zhang, Han</creator><creator>Zhou, Ziyao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0002-9604-7403</orcidid></search><sort><creationdate>20241101</creationdate><title>Multi‐Functional Interface Passivation via Guanidinium Iodide Enables Efficient Perovskite Solar Cells</title><author>Su, Jian ; Hu, Tao ; Chen, Xin ; Zhang, Xianwei ; Fang, Ning ; Hao, Jican ; Guo, Huafei ; Jiang, Sai ; Gu, Ding ; Qiu, Jianhua ; Zhang, Han ; Zhou, Ziyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2024-8618c5bfad8d4542eab6fb71a49961ddacf6f612ccb179d9a3c9a10028840d253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier transport</topic><topic>Crystal defects</topic><topic>Crystal lattices</topic><topic>Crystallization</topic><topic>Current carriers</topic><topic>Energy conversion efficiency</topic><topic>Grain boundaries</topic><topic>guanidinium</topic><topic>interface passivation</topic><topic>Nitrogen atoms</topic><topic>non‐radiative recombination</topic><topic>Passivity</topic><topic>Performance enhancement</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Radiative recombination</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Surface defects</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Jian</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zhang, Xianwei</creatorcontrib><creatorcontrib>Fang, Ning</creatorcontrib><creatorcontrib>Hao, Jican</creatorcontrib><creatorcontrib>Guo, Huafei</creatorcontrib><creatorcontrib>Jiang, Sai</creatorcontrib><creatorcontrib>Gu, Ding</creatorcontrib><creatorcontrib>Qiu, Jianhua</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Zhou, Ziyao</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Jian</au><au>Hu, Tao</au><au>Chen, Xin</au><au>Zhang, Xianwei</au><au>Fang, Ning</au><au>Hao, Jican</au><au>Guo, Huafei</au><au>Jiang, Sai</au><au>Gu, Ding</au><au>Qiu, Jianhua</au><au>Zhang, Han</au><au>Zhou, Ziyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐Functional Interface Passivation via Guanidinium Iodide Enables Efficient Perovskite Solar Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>34</volume><issue>45</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Perovskite solar cells have become a leading contender in next‐generation photovoltaic technologies due to their high efficiency and low‐cost potential. Managing the deep defects present effectively in the crystal lattice and at the interfaces is essential for enhancing the performance and longevity of perovskite solar cells. Here, perovskite's crystallization modulation and interfacial defect passivation are achieved by developing a guanidinium iodide (GAI)‐based surface passivation strategy. The integration of GAI passivates the grain boundaries, leading to a perovskite thin film with a smoother and more uniform grain distribution, facilitating charge carrier transport. Notably, the ammonium group, unsaturated nitrogen atoms, and iodide ions in GAI can collectively repair the surface defects of perovskite through various pathways, effectively suppressing non‐radiative recombination, thereby enhancing the photovoltaic performance of the device. Ultimately, the champion device treated with GAI achieves a power conversion efficiency (PCE) of 23.02% and demonstrates similar ambient stability under unencapsulated conditions. These findings underscore the effectiveness of GAI passivation as a strategy to balance the improvement of the performance and stability of perovskite solar cells.
A multi‐functional perovskite interface passivation strategy based on guanidinium iodide is proposed. The guanidinium iodide, with its ammonium group, unsaturated nitrogen atoms, and iodide ions, synergistically repairs the perovskite interface defects through various pathways, passivates the grain boundaries, effectively suppresses non‐radiative recombination, and significantly improves the photovoltaic performance of the device.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202406324</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0002-9604-7403</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-11, Vol.34 (45), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3123691747 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carrier transport Crystal defects Crystal lattices Crystallization Current carriers Energy conversion efficiency Grain boundaries guanidinium interface passivation Nitrogen atoms non‐radiative recombination Passivity Performance enhancement Perovskites Photovoltaic cells Radiative recombination Solar cells Stability Surface defects Thin films |
title | Multi‐Functional Interface Passivation via Guanidinium Iodide Enables Efficient Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90Functional%20Interface%20Passivation%20via%20Guanidinium%20Iodide%20Enables%20Efficient%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Su,%20Jian&rft.date=2024-11-01&rft.volume=34&rft.issue=45&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202406324&rft_dat=%3Cproquest_cross%3E3123691747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123691747&rft_id=info:pmid/&rfr_iscdi=true |