Multi‐Functional Interface Passivation via Guanidinium Iodide Enables Efficient Perovskite Solar Cells

Perovskite solar cells have become a leading contender in next‐generation photovoltaic technologies due to their high efficiency and low‐cost potential. Managing the deep defects present effectively in the crystal lattice and at the interfaces is essential for enhancing the performance and longevity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-11, Vol.34 (45), p.n/a
Hauptverfasser: Su, Jian, Hu, Tao, Chen, Xin, Zhang, Xianwei, Fang, Ning, Hao, Jican, Guo, Huafei, Jiang, Sai, Gu, Ding, Qiu, Jianhua, Zhang, Han, Zhou, Ziyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 45
container_start_page
container_title Advanced functional materials
container_volume 34
creator Su, Jian
Hu, Tao
Chen, Xin
Zhang, Xianwei
Fang, Ning
Hao, Jican
Guo, Huafei
Jiang, Sai
Gu, Ding
Qiu, Jianhua
Zhang, Han
Zhou, Ziyao
description Perovskite solar cells have become a leading contender in next‐generation photovoltaic technologies due to their high efficiency and low‐cost potential. Managing the deep defects present effectively in the crystal lattice and at the interfaces is essential for enhancing the performance and longevity of perovskite solar cells. Here, perovskite's crystallization modulation and interfacial defect passivation are achieved by developing a guanidinium iodide (GAI)‐based surface passivation strategy. The integration of GAI passivates the grain boundaries, leading to a perovskite thin film with a smoother and more uniform grain distribution, facilitating charge carrier transport. Notably, the ammonium group, unsaturated nitrogen atoms, and iodide ions in GAI can collectively repair the surface defects of perovskite through various pathways, effectively suppressing non‐radiative recombination, thereby enhancing the photovoltaic performance of the device. Ultimately, the champion device treated with GAI achieves a power conversion efficiency (PCE) of 23.02% and demonstrates similar ambient stability under unencapsulated conditions. These findings underscore the effectiveness of GAI passivation as a strategy to balance the improvement of the performance and stability of perovskite solar cells. A multi‐functional perovskite interface passivation strategy based on guanidinium iodide is proposed. The guanidinium iodide, with its ammonium group, unsaturated nitrogen atoms, and iodide ions, synergistically repairs the perovskite interface defects through various pathways, passivates the grain boundaries, effectively suppresses non‐radiative recombination, and significantly improves the photovoltaic performance of the device.
doi_str_mv 10.1002/adfm.202406324
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3123691747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123691747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2024-8618c5bfad8d4542eab6fb71a49961ddacf6f612ccb179d9a3c9a10028840d253</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXrUkmzcwsS21rocWCCu7CnfxgajpTk5lKdz6Cz-iT2KFSl67u5fKdwz0HoWtK-pQQdgvarvuMME5EwvgJ6lBBRS8hLDs97vTlHF3EuCKEpmnCO-h10fjafX9-TZpS1a4qweNZWZtgQRm8hBjdFto73jrA0wZKp13pmjWeVdppg8clFN5EPLbWKWfKGi9NqLbxzdUGP1YeAh4Z7-MlOrPgo7n6nV30PBk_je5784fpbDSc91T7ei8TNFODwoLONB9wZqAQtkgp8DwXVGtQVlhBmVIFTXOdQ6JyaONnGSeaDZIuujn4bkL13phYy1XVhH2sKBPKEpHTlKd7qn-gVKhiDMbKTXBrCDtJiWztZNumPLa5F-QHwYfzZvcPLYd3k8Wf9gdyensi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123691747</pqid></control><display><type>article</type><title>Multi‐Functional Interface Passivation via Guanidinium Iodide Enables Efficient Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Su, Jian ; Hu, Tao ; Chen, Xin ; Zhang, Xianwei ; Fang, Ning ; Hao, Jican ; Guo, Huafei ; Jiang, Sai ; Gu, Ding ; Qiu, Jianhua ; Zhang, Han ; Zhou, Ziyao</creator><creatorcontrib>Su, Jian ; Hu, Tao ; Chen, Xin ; Zhang, Xianwei ; Fang, Ning ; Hao, Jican ; Guo, Huafei ; Jiang, Sai ; Gu, Ding ; Qiu, Jianhua ; Zhang, Han ; Zhou, Ziyao</creatorcontrib><description>Perovskite solar cells have become a leading contender in next‐generation photovoltaic technologies due to their high efficiency and low‐cost potential. Managing the deep defects present effectively in the crystal lattice and at the interfaces is essential for enhancing the performance and longevity of perovskite solar cells. Here, perovskite's crystallization modulation and interfacial defect passivation are achieved by developing a guanidinium iodide (GAI)‐based surface passivation strategy. The integration of GAI passivates the grain boundaries, leading to a perovskite thin film with a smoother and more uniform grain distribution, facilitating charge carrier transport. Notably, the ammonium group, unsaturated nitrogen atoms, and iodide ions in GAI can collectively repair the surface defects of perovskite through various pathways, effectively suppressing non‐radiative recombination, thereby enhancing the photovoltaic performance of the device. Ultimately, the champion device treated with GAI achieves a power conversion efficiency (PCE) of 23.02% and demonstrates similar ambient stability under unencapsulated conditions. These findings underscore the effectiveness of GAI passivation as a strategy to balance the improvement of the performance and stability of perovskite solar cells. A multi‐functional perovskite interface passivation strategy based on guanidinium iodide is proposed. The guanidinium iodide, with its ammonium group, unsaturated nitrogen atoms, and iodide ions, synergistically repairs the perovskite interface defects through various pathways, passivates the grain boundaries, effectively suppresses non‐radiative recombination, and significantly improves the photovoltaic performance of the device.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202406324</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carrier transport ; Crystal defects ; Crystal lattices ; Crystallization ; Current carriers ; Energy conversion efficiency ; Grain boundaries ; guanidinium ; interface passivation ; Nitrogen atoms ; non‐radiative recombination ; Passivity ; Performance enhancement ; Perovskites ; Photovoltaic cells ; Radiative recombination ; Solar cells ; Stability ; Surface defects ; Thin films</subject><ispartof>Advanced functional materials, 2024-11, Vol.34 (45), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2024-8618c5bfad8d4542eab6fb71a49961ddacf6f612ccb179d9a3c9a10028840d253</cites><orcidid>0009-0002-9604-7403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202406324$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202406324$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Su, Jian</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zhang, Xianwei</creatorcontrib><creatorcontrib>Fang, Ning</creatorcontrib><creatorcontrib>Hao, Jican</creatorcontrib><creatorcontrib>Guo, Huafei</creatorcontrib><creatorcontrib>Jiang, Sai</creatorcontrib><creatorcontrib>Gu, Ding</creatorcontrib><creatorcontrib>Qiu, Jianhua</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Zhou, Ziyao</creatorcontrib><title>Multi‐Functional Interface Passivation via Guanidinium Iodide Enables Efficient Perovskite Solar Cells</title><title>Advanced functional materials</title><description>Perovskite solar cells have become a leading contender in next‐generation photovoltaic technologies due to their high efficiency and low‐cost potential. Managing the deep defects present effectively in the crystal lattice and at the interfaces is essential for enhancing the performance and longevity of perovskite solar cells. Here, perovskite's crystallization modulation and interfacial defect passivation are achieved by developing a guanidinium iodide (GAI)‐based surface passivation strategy. The integration of GAI passivates the grain boundaries, leading to a perovskite thin film with a smoother and more uniform grain distribution, facilitating charge carrier transport. Notably, the ammonium group, unsaturated nitrogen atoms, and iodide ions in GAI can collectively repair the surface defects of perovskite through various pathways, effectively suppressing non‐radiative recombination, thereby enhancing the photovoltaic performance of the device. Ultimately, the champion device treated with GAI achieves a power conversion efficiency (PCE) of 23.02% and demonstrates similar ambient stability under unencapsulated conditions. These findings underscore the effectiveness of GAI passivation as a strategy to balance the improvement of the performance and stability of perovskite solar cells. A multi‐functional perovskite interface passivation strategy based on guanidinium iodide is proposed. The guanidinium iodide, with its ammonium group, unsaturated nitrogen atoms, and iodide ions, synergistically repairs the perovskite interface defects through various pathways, passivates the grain boundaries, effectively suppresses non‐radiative recombination, and significantly improves the photovoltaic performance of the device.</description><subject>Carrier transport</subject><subject>Crystal defects</subject><subject>Crystal lattices</subject><subject>Crystallization</subject><subject>Current carriers</subject><subject>Energy conversion efficiency</subject><subject>Grain boundaries</subject><subject>guanidinium</subject><subject>interface passivation</subject><subject>Nitrogen atoms</subject><subject>non‐radiative recombination</subject><subject>Passivity</subject><subject>Performance enhancement</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Radiative recombination</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Surface defects</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wHXrUkmzcwsS21rocWCCu7CnfxgajpTk5lKdz6Cz-iT2KFSl67u5fKdwz0HoWtK-pQQdgvarvuMME5EwvgJ6lBBRS8hLDs97vTlHF3EuCKEpmnCO-h10fjafX9-TZpS1a4qweNZWZtgQRm8hBjdFto73jrA0wZKp13pmjWeVdppg8clFN5EPLbWKWfKGi9NqLbxzdUGP1YeAh4Z7-MlOrPgo7n6nV30PBk_je5784fpbDSc91T7ei8TNFODwoLONB9wZqAQtkgp8DwXVGtQVlhBmVIFTXOdQ6JyaONnGSeaDZIuujn4bkL13phYy1XVhH2sKBPKEpHTlKd7qn-gVKhiDMbKTXBrCDtJiWztZNumPLa5F-QHwYfzZvcPLYd3k8Wf9gdyensi</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Su, Jian</creator><creator>Hu, Tao</creator><creator>Chen, Xin</creator><creator>Zhang, Xianwei</creator><creator>Fang, Ning</creator><creator>Hao, Jican</creator><creator>Guo, Huafei</creator><creator>Jiang, Sai</creator><creator>Gu, Ding</creator><creator>Qiu, Jianhua</creator><creator>Zhang, Han</creator><creator>Zhou, Ziyao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0002-9604-7403</orcidid></search><sort><creationdate>20241101</creationdate><title>Multi‐Functional Interface Passivation via Guanidinium Iodide Enables Efficient Perovskite Solar Cells</title><author>Su, Jian ; Hu, Tao ; Chen, Xin ; Zhang, Xianwei ; Fang, Ning ; Hao, Jican ; Guo, Huafei ; Jiang, Sai ; Gu, Ding ; Qiu, Jianhua ; Zhang, Han ; Zhou, Ziyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2024-8618c5bfad8d4542eab6fb71a49961ddacf6f612ccb179d9a3c9a10028840d253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier transport</topic><topic>Crystal defects</topic><topic>Crystal lattices</topic><topic>Crystallization</topic><topic>Current carriers</topic><topic>Energy conversion efficiency</topic><topic>Grain boundaries</topic><topic>guanidinium</topic><topic>interface passivation</topic><topic>Nitrogen atoms</topic><topic>non‐radiative recombination</topic><topic>Passivity</topic><topic>Performance enhancement</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Radiative recombination</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Surface defects</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Jian</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zhang, Xianwei</creatorcontrib><creatorcontrib>Fang, Ning</creatorcontrib><creatorcontrib>Hao, Jican</creatorcontrib><creatorcontrib>Guo, Huafei</creatorcontrib><creatorcontrib>Jiang, Sai</creatorcontrib><creatorcontrib>Gu, Ding</creatorcontrib><creatorcontrib>Qiu, Jianhua</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Zhou, Ziyao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Jian</au><au>Hu, Tao</au><au>Chen, Xin</au><au>Zhang, Xianwei</au><au>Fang, Ning</au><au>Hao, Jican</au><au>Guo, Huafei</au><au>Jiang, Sai</au><au>Gu, Ding</au><au>Qiu, Jianhua</au><au>Zhang, Han</au><au>Zhou, Ziyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐Functional Interface Passivation via Guanidinium Iodide Enables Efficient Perovskite Solar Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>34</volume><issue>45</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Perovskite solar cells have become a leading contender in next‐generation photovoltaic technologies due to their high efficiency and low‐cost potential. Managing the deep defects present effectively in the crystal lattice and at the interfaces is essential for enhancing the performance and longevity of perovskite solar cells. Here, perovskite's crystallization modulation and interfacial defect passivation are achieved by developing a guanidinium iodide (GAI)‐based surface passivation strategy. The integration of GAI passivates the grain boundaries, leading to a perovskite thin film with a smoother and more uniform grain distribution, facilitating charge carrier transport. Notably, the ammonium group, unsaturated nitrogen atoms, and iodide ions in GAI can collectively repair the surface defects of perovskite through various pathways, effectively suppressing non‐radiative recombination, thereby enhancing the photovoltaic performance of the device. Ultimately, the champion device treated with GAI achieves a power conversion efficiency (PCE) of 23.02% and demonstrates similar ambient stability under unencapsulated conditions. These findings underscore the effectiveness of GAI passivation as a strategy to balance the improvement of the performance and stability of perovskite solar cells. A multi‐functional perovskite interface passivation strategy based on guanidinium iodide is proposed. The guanidinium iodide, with its ammonium group, unsaturated nitrogen atoms, and iodide ions, synergistically repairs the perovskite interface defects through various pathways, passivates the grain boundaries, effectively suppresses non‐radiative recombination, and significantly improves the photovoltaic performance of the device.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202406324</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0002-9604-7403</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-11, Vol.34 (45), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3123691747
source Wiley Online Library Journals Frontfile Complete
subjects Carrier transport
Crystal defects
Crystal lattices
Crystallization
Current carriers
Energy conversion efficiency
Grain boundaries
guanidinium
interface passivation
Nitrogen atoms
non‐radiative recombination
Passivity
Performance enhancement
Perovskites
Photovoltaic cells
Radiative recombination
Solar cells
Stability
Surface defects
Thin films
title Multi‐Functional Interface Passivation via Guanidinium Iodide Enables Efficient Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90Functional%20Interface%20Passivation%20via%20Guanidinium%20Iodide%20Enables%20Efficient%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Su,%20Jian&rft.date=2024-11-01&rft.volume=34&rft.issue=45&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202406324&rft_dat=%3Cproquest_cross%3E3123691747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123691747&rft_id=info:pmid/&rfr_iscdi=true