Charge Carrier Dynamics of the Mixed Conducting Interphase in All‐Solid‐State Batteries: Lithiated Li1.3Al0.3Ti1.7(PO4)3 as a Case Study

All‐solid‐state batteries relying on Li metal as negative electrode material and a ceramic electrolyte may severely suffer from unwanted interfacial processes. Here, Li1.3Al0.3Ti1.7(PO4)3 (LATP) serve as a model electrolyte which is known to form an ionic‐electronic, that is, mixed conducting interp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-11, Vol.34 (45), p.n/a
Hauptverfasser: Scheiber, Thomas, Gadermaier, Bernhard, Finšgar, Matjaž, Wilkening, H. Martin R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 45
container_start_page
container_title Advanced functional materials
container_volume 34
creator Scheiber, Thomas
Gadermaier, Bernhard
Finšgar, Matjaž
Wilkening, H. Martin R.
description All‐solid‐state batteries relying on Li metal as negative electrode material and a ceramic electrolyte may severely suffer from unwanted interfacial processes. Here, Li1.3Al0.3Ti1.7(PO4)3 (LATP) serve as a model electrolyte which is known to form an ionic‐electronic, that is, mixed conducting interphase (MCI) when in contact with metallic Li or any other Li source. Li1.3+xAl0.3Ti1.7(PO4)3 with x = 0.2, 0.6 and 1.3 is prepared via ex situ chemical lithiation to mimic the formation of MCIs taking place otherwise operando. The preparation of large amounts of lithiated LATP with controlled Li contents allowed us to use nuclear and electric techniques to study local structures and ionic/electronic dynamics in detail. The results point to the formation of a core‐shell two‐phase morphology with the Li‐rich Li3Al0.3Ti1.7(PO4)3 phase covering the nonlithiated Li‐poor regions. The originally poor electronic conductivity σeon of 6.5 × 10−12 S cm−1 (293 K) increases by ≈3 orders of magnitude, hence reaching the order of 6.6 × 10−9 S cm−1 for x = 0.6. At even higher loadings (x = 1.3), a decrease in conductivity is seen, i.e., not exceeding alarming values for σeon. Quantifying electronic and ionic transport processes will help assessing the extent of damage through MCI formation and discussing whether any strategies to mitigate such formation is necessary at all. Chemical lithiation is used to mimic the operando formation of a mixed conducting interphase in lithium aluminium titanium phosphate (LATP). While spectroscopic methods give evidence for the formation of a core‐shell structure with a Ti3+‐enriched layer covering the LATP crystallites, chronoamperometric polarization revealed that electronic conductivities do not reach alarming values for its application as solid electrolyte.
doi_str_mv 10.1002/adfm.202404562
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3123689938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123689938</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2732-df1935a11d4add4818dc52bf2fc5f6351c91070093a3422f0825745afb7bcd233</originalsourceid><addsrcrecordid>eNo9kMtKw0AYhQdRsFa3rgfc6CJxbrm5q6nVQkuFVnA3TDMzzUiaxMkEzc4HcOEz-iSmVLo63_9zOAcOAJcY-Rghciuk3voEEYZYEJIjMMAhDj2KSHx8YPx6Cs6a5g0hHEWUDcB3mgu7UTAV1hpl4bgrxdZkDaw0dLmCc_OpJEyrUraZM-UGTkunbJ2LRkFTwlFR_H79LKvCyJ064RS8F663GNXcwZlxuel_sifs01GBfLrqKbp-XrAbCkUDRV_dZy1dK7tzcKJF0aiLfx2Cl8nDKn3yZovHaTqaeTWJKPGkxgkNBMaSCSlZjGOZBWStic4CHdIAZwlGEUIJFZQRolFMgogFQq-jdSYJpUNwtc-tbfXeqsbxt6q1ZV_JKSY0jJOExr0r2bs-TKE6XluzFbbjGPHd3Hw3Nz_MzUfjyfxw0T8kEnXN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123689938</pqid></control><display><type>article</type><title>Charge Carrier Dynamics of the Mixed Conducting Interphase in All‐Solid‐State Batteries: Lithiated Li1.3Al0.3Ti1.7(PO4)3 as a Case Study</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Scheiber, Thomas ; Gadermaier, Bernhard ; Finšgar, Matjaž ; Wilkening, H. Martin R.</creator><creatorcontrib>Scheiber, Thomas ; Gadermaier, Bernhard ; Finšgar, Matjaž ; Wilkening, H. Martin R.</creatorcontrib><description>All‐solid‐state batteries relying on Li metal as negative electrode material and a ceramic electrolyte may severely suffer from unwanted interfacial processes. Here, Li1.3Al0.3Ti1.7(PO4)3 (LATP) serve as a model electrolyte which is known to form an ionic‐electronic, that is, mixed conducting interphase (MCI) when in contact with metallic Li or any other Li source. Li1.3+xAl0.3Ti1.7(PO4)3 with x = 0.2, 0.6 and 1.3 is prepared via ex situ chemical lithiation to mimic the formation of MCIs taking place otherwise operando. The preparation of large amounts of lithiated LATP with controlled Li contents allowed us to use nuclear and electric techniques to study local structures and ionic/electronic dynamics in detail. The results point to the formation of a core‐shell two‐phase morphology with the Li‐rich Li3Al0.3Ti1.7(PO4)3 phase covering the nonlithiated Li‐poor regions. The originally poor electronic conductivity σeon of 6.5 × 10−12 S cm−1 (293 K) increases by ≈3 orders of magnitude, hence reaching the order of 6.6 × 10−9 S cm−1 for x = 0.6. At even higher loadings (x = 1.3), a decrease in conductivity is seen, i.e., not exceeding alarming values for σeon. Quantifying electronic and ionic transport processes will help assessing the extent of damage through MCI formation and discussing whether any strategies to mitigate such formation is necessary at all. Chemical lithiation is used to mimic the operando formation of a mixed conducting interphase in lithium aluminium titanium phosphate (LATP). While spectroscopic methods give evidence for the formation of a core‐shell structure with a Ti3+‐enriched layer covering the LATP crystallites, chronoamperometric polarization revealed that electronic conductivities do not reach alarming values for its application as solid electrolyte.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202404562</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Batteries ; conductivity ; Current carriers ; Damage assessment ; Electric contacts ; Electrode materials ; Electrolytes ; interphase ; mixed conductors ; NMR ; solid electrolytes</subject><ispartof>Advanced functional materials, 2024-11, Vol.34 (45), p.n/a</ispartof><rights>2024 The Author(s). Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2917-1818 ; 0000-0001-9706-4892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202404562$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202404562$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Scheiber, Thomas</creatorcontrib><creatorcontrib>Gadermaier, Bernhard</creatorcontrib><creatorcontrib>Finšgar, Matjaž</creatorcontrib><creatorcontrib>Wilkening, H. Martin R.</creatorcontrib><title>Charge Carrier Dynamics of the Mixed Conducting Interphase in All‐Solid‐State Batteries: Lithiated Li1.3Al0.3Ti1.7(PO4)3 as a Case Study</title><title>Advanced functional materials</title><description>All‐solid‐state batteries relying on Li metal as negative electrode material and a ceramic electrolyte may severely suffer from unwanted interfacial processes. Here, Li1.3Al0.3Ti1.7(PO4)3 (LATP) serve as a model electrolyte which is known to form an ionic‐electronic, that is, mixed conducting interphase (MCI) when in contact with metallic Li or any other Li source. Li1.3+xAl0.3Ti1.7(PO4)3 with x = 0.2, 0.6 and 1.3 is prepared via ex situ chemical lithiation to mimic the formation of MCIs taking place otherwise operando. The preparation of large amounts of lithiated LATP with controlled Li contents allowed us to use nuclear and electric techniques to study local structures and ionic/electronic dynamics in detail. The results point to the formation of a core‐shell two‐phase morphology with the Li‐rich Li3Al0.3Ti1.7(PO4)3 phase covering the nonlithiated Li‐poor regions. The originally poor electronic conductivity σeon of 6.5 × 10−12 S cm−1 (293 K) increases by ≈3 orders of magnitude, hence reaching the order of 6.6 × 10−9 S cm−1 for x = 0.6. At even higher loadings (x = 1.3), a decrease in conductivity is seen, i.e., not exceeding alarming values for σeon. Quantifying electronic and ionic transport processes will help assessing the extent of damage through MCI formation and discussing whether any strategies to mitigate such formation is necessary at all. Chemical lithiation is used to mimic the operando formation of a mixed conducting interphase in lithium aluminium titanium phosphate (LATP). While spectroscopic methods give evidence for the formation of a core‐shell structure with a Ti3+‐enriched layer covering the LATP crystallites, chronoamperometric polarization revealed that electronic conductivities do not reach alarming values for its application as solid electrolyte.</description><subject>Batteries</subject><subject>conductivity</subject><subject>Current carriers</subject><subject>Damage assessment</subject><subject>Electric contacts</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>interphase</subject><subject>mixed conductors</subject><subject>NMR</subject><subject>solid electrolytes</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kMtKw0AYhQdRsFa3rgfc6CJxbrm5q6nVQkuFVnA3TDMzzUiaxMkEzc4HcOEz-iSmVLo63_9zOAcOAJcY-Rghciuk3voEEYZYEJIjMMAhDj2KSHx8YPx6Cs6a5g0hHEWUDcB3mgu7UTAV1hpl4bgrxdZkDaw0dLmCc_OpJEyrUraZM-UGTkunbJ2LRkFTwlFR_H79LKvCyJ064RS8F663GNXcwZlxuel_sifs01GBfLrqKbp-XrAbCkUDRV_dZy1dK7tzcKJF0aiLfx2Cl8nDKn3yZovHaTqaeTWJKPGkxgkNBMaSCSlZjGOZBWStic4CHdIAZwlGEUIJFZQRolFMgogFQq-jdSYJpUNwtc-tbfXeqsbxt6q1ZV_JKSY0jJOExr0r2bs-TKE6XluzFbbjGPHd3Hw3Nz_MzUfjyfxw0T8kEnXN</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Scheiber, Thomas</creator><creator>Gadermaier, Bernhard</creator><creator>Finšgar, Matjaž</creator><creator>Wilkening, H. Martin R.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2917-1818</orcidid><orcidid>https://orcid.org/0000-0001-9706-4892</orcidid></search><sort><creationdate>20241101</creationdate><title>Charge Carrier Dynamics of the Mixed Conducting Interphase in All‐Solid‐State Batteries: Lithiated Li1.3Al0.3Ti1.7(PO4)3 as a Case Study</title><author>Scheiber, Thomas ; Gadermaier, Bernhard ; Finšgar, Matjaž ; Wilkening, H. Martin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2732-df1935a11d4add4818dc52bf2fc5f6351c91070093a3422f0825745afb7bcd233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>conductivity</topic><topic>Current carriers</topic><topic>Damage assessment</topic><topic>Electric contacts</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>interphase</topic><topic>mixed conductors</topic><topic>NMR</topic><topic>solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheiber, Thomas</creatorcontrib><creatorcontrib>Gadermaier, Bernhard</creatorcontrib><creatorcontrib>Finšgar, Matjaž</creatorcontrib><creatorcontrib>Wilkening, H. Martin R.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheiber, Thomas</au><au>Gadermaier, Bernhard</au><au>Finšgar, Matjaž</au><au>Wilkening, H. Martin R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge Carrier Dynamics of the Mixed Conducting Interphase in All‐Solid‐State Batteries: Lithiated Li1.3Al0.3Ti1.7(PO4)3 as a Case Study</atitle><jtitle>Advanced functional materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>34</volume><issue>45</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>All‐solid‐state batteries relying on Li metal as negative electrode material and a ceramic electrolyte may severely suffer from unwanted interfacial processes. Here, Li1.3Al0.3Ti1.7(PO4)3 (LATP) serve as a model electrolyte which is known to form an ionic‐electronic, that is, mixed conducting interphase (MCI) when in contact with metallic Li or any other Li source. Li1.3+xAl0.3Ti1.7(PO4)3 with x = 0.2, 0.6 and 1.3 is prepared via ex situ chemical lithiation to mimic the formation of MCIs taking place otherwise operando. The preparation of large amounts of lithiated LATP with controlled Li contents allowed us to use nuclear and electric techniques to study local structures and ionic/electronic dynamics in detail. The results point to the formation of a core‐shell two‐phase morphology with the Li‐rich Li3Al0.3Ti1.7(PO4)3 phase covering the nonlithiated Li‐poor regions. The originally poor electronic conductivity σeon of 6.5 × 10−12 S cm−1 (293 K) increases by ≈3 orders of magnitude, hence reaching the order of 6.6 × 10−9 S cm−1 for x = 0.6. At even higher loadings (x = 1.3), a decrease in conductivity is seen, i.e., not exceeding alarming values for σeon. Quantifying electronic and ionic transport processes will help assessing the extent of damage through MCI formation and discussing whether any strategies to mitigate such formation is necessary at all. Chemical lithiation is used to mimic the operando formation of a mixed conducting interphase in lithium aluminium titanium phosphate (LATP). While spectroscopic methods give evidence for the formation of a core‐shell structure with a Ti3+‐enriched layer covering the LATP crystallites, chronoamperometric polarization revealed that electronic conductivities do not reach alarming values for its application as solid electrolyte.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202404562</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2917-1818</orcidid><orcidid>https://orcid.org/0000-0001-9706-4892</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-11, Vol.34 (45), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3123689938
source Wiley Online Library Journals Frontfile Complete
subjects Batteries
conductivity
Current carriers
Damage assessment
Electric contacts
Electrode materials
Electrolytes
interphase
mixed conductors
NMR
solid electrolytes
title Charge Carrier Dynamics of the Mixed Conducting Interphase in All‐Solid‐State Batteries: Lithiated Li1.3Al0.3Ti1.7(PO4)3 as a Case Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20Carrier%20Dynamics%20of%20the%20Mixed%20Conducting%20Interphase%20in%20All%E2%80%90Solid%E2%80%90State%20Batteries:%20Lithiated%20Li1.3Al0.3Ti1.7(PO4)3%20as%20a%20Case%20Study&rft.jtitle=Advanced%20functional%20materials&rft.au=Scheiber,%20Thomas&rft.date=2024-11-01&rft.volume=34&rft.issue=45&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202404562&rft_dat=%3Cproquest_wiley%3E3123689938%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123689938&rft_id=info:pmid/&rfr_iscdi=true