Steering the Site Distance of Atomic Cu−Cu Pairs by First‐Shell Halogen Coordination Boosts CO2‐to‐C2 Selectivity
Electrocatalytic reduction of CO2 into C2 products of high economic value provides a promising strategy to realize resourceful CO2 utilization. Rational design and construct dual sites to realize the CO protonation and C−C coupling to unravel their structure‐performance correlation is of great signi...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2024-11, Vol.136 (46), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 46 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 136 |
creator | Ma, Fengya Zhang, Pengfang Zheng, Xiaobo Chen, Liang Li, Yunrui Zhuang, Zechao Fan, Yameng Jiang, Peng Zhao, Hui Zhang, Jiawei Dong, Yuming Zhu, Yongfa Wang, Dingsheng Wang, Yao |
description | Electrocatalytic reduction of CO2 into C2 products of high economic value provides a promising strategy to realize resourceful CO2 utilization. Rational design and construct dual sites to realize the CO protonation and C−C coupling to unravel their structure‐performance correlation is of great significance in catalysing electrochemical CO2 reduction reactions. Herein, Cu−Cu dual sites with different site distance coordinated by halogen at the first‐shell are constructed and shows a higher intramolecular electron redispersion and coordination symmetry configurations. The long‐range Cu−Cu (Cu−I−Cu) dual sites show an enhanced Faraday efficiency of C2 products, up to 74.1 %, and excellent stability. In addition, the linear relationships that the long‐range Cu−Cu dual sites are accelerated to C2H4 generation and short‐range Cu−Cu (Cu−Cl−Cu) dual sites are beneficial for C2H5OH formation are disclosed. In situ electrochemical attenuated total reflection surface enhanced infrared absorption spectroscopy, in situ Raman and theoretical calculations manifest that long‐range Cu−Cu dual sites can weaken reaction energy barriers of CO hydrogenation and C−C coupling, as well as accelerating deoxygenation of *CH2CHO. This study uncovers the exploitation of site‐distance‐dependent electrochemical properties to steer the CO2 reduction pathway, as well as a potential generic tactic to target C2 synthesis by constructing the desired Cu−Cu dual sites.
The atomic Cu−Cu pairs with a controllable site distance by first‐shell halogen coordination was reported in this work, which shows an enhanced CO2RR performance of C2 products. In addition, a linear scaling relationship that that long‐range Cu−Cu (Cu−I−Cu) dual sites is accelerated to C2H4 generation, while short‐range Cu−Cu (Cu−Cl−Cu) dual sites is beneficial for C2H5OH formation was revealed to give a wide comprehension towards site‐distance‐dependent catalytic performance. |
doi_str_mv | 10.1002/ange.202412785 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3123670079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123670079</sourcerecordid><originalsourceid>FETCH-LOGICAL-p785-72b5bd4b17b57015e8b8b0b7c446707a6cc25642bc7541283d4fca981dc0313e3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AYhBdRsFavnhc8p-5nNjnW2A-hWCG9L7ubbbslzdZkq-Tm0aP4E_tLTKn08g4vPMwwA8A9RgOMEHlU1coOCCIME5HwC9DDnOCICi4uQQ8hxqKEsPQa3DTNBiEUE5H2QJsHa2tXrWBYW5i7YOGza4KqjIV-CYfBb52B2f7w_Zvt4ZtydQN1C8edhsPXT762ZQmnqvQrW8HM-7pwlQrOV_DJ-yY0MJuTjgu-OxmBuS2tCe7DhfYWXC1V2di7f-2DxXi0yKbRbD55yYazaNe1iATRXBdMY6G5QJjbRCcaaWEYiwUSKjaG8JgRbQTviie0YEuj0gQXBlFMLe2Dh5Ptrvbve9sEufH7uuoSJcWEdiZIpB2VnqhPV9pW7mq3VXUrMZLHaeVxWnmeVg5fJ6PzR_8AR1dyxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123670079</pqid></control><display><type>article</type><title>Steering the Site Distance of Atomic Cu−Cu Pairs by First‐Shell Halogen Coordination Boosts CO2‐to‐C2 Selectivity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ma, Fengya ; Zhang, Pengfang ; Zheng, Xiaobo ; Chen, Liang ; Li, Yunrui ; Zhuang, Zechao ; Fan, Yameng ; Jiang, Peng ; Zhao, Hui ; Zhang, Jiawei ; Dong, Yuming ; Zhu, Yongfa ; Wang, Dingsheng ; Wang, Yao</creator><creatorcontrib>Ma, Fengya ; Zhang, Pengfang ; Zheng, Xiaobo ; Chen, Liang ; Li, Yunrui ; Zhuang, Zechao ; Fan, Yameng ; Jiang, Peng ; Zhao, Hui ; Zhang, Jiawei ; Dong, Yuming ; Zhu, Yongfa ; Wang, Dingsheng ; Wang, Yao</creatorcontrib><description>Electrocatalytic reduction of CO2 into C2 products of high economic value provides a promising strategy to realize resourceful CO2 utilization. Rational design and construct dual sites to realize the CO protonation and C−C coupling to unravel their structure‐performance correlation is of great significance in catalysing electrochemical CO2 reduction reactions. Herein, Cu−Cu dual sites with different site distance coordinated by halogen at the first‐shell are constructed and shows a higher intramolecular electron redispersion and coordination symmetry configurations. The long‐range Cu−Cu (Cu−I−Cu) dual sites show an enhanced Faraday efficiency of C2 products, up to 74.1 %, and excellent stability. In addition, the linear relationships that the long‐range Cu−Cu dual sites are accelerated to C2H4 generation and short‐range Cu−Cu (Cu−Cl−Cu) dual sites are beneficial for C2H5OH formation are disclosed. In situ electrochemical attenuated total reflection surface enhanced infrared absorption spectroscopy, in situ Raman and theoretical calculations manifest that long‐range Cu−Cu dual sites can weaken reaction energy barriers of CO hydrogenation and C−C coupling, as well as accelerating deoxygenation of *CH2CHO. This study uncovers the exploitation of site‐distance‐dependent electrochemical properties to steer the CO2 reduction pathway, as well as a potential generic tactic to target C2 synthesis by constructing the desired Cu−Cu dual sites.
The atomic Cu−Cu pairs with a controllable site distance by first‐shell halogen coordination was reported in this work, which shows an enhanced CO2RR performance of C2 products. In addition, a linear scaling relationship that that long‐range Cu−Cu (Cu−I−Cu) dual sites is accelerated to C2H4 generation, while short‐range Cu−Cu (Cu−Cl−Cu) dual sites is beneficial for C2H5OH formation was revealed to give a wide comprehension towards site‐distance‐dependent catalytic performance.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202412785</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; C2 products ; Carbon dioxide ; Carbon monoxide ; Chemical reactions ; Chemical reduction ; CO2 reduction reaction ; Coordination ; Coupling ; Cu−Cu dual site ; C−C coupling ; Deoxygenation ; Electrochemical analysis ; Electrochemistry ; Infrared absorption ; Infrared reflection ; Infrared spectroscopy ; Protonation ; site distance regulation ; Steering</subject><ispartof>Angewandte Chemie, 2024-11, Vol.136 (46), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0074-7633 ; 0000-0001-9578-9128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202412785$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202412785$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ma, Fengya</creatorcontrib><creatorcontrib>Zhang, Pengfang</creatorcontrib><creatorcontrib>Zheng, Xiaobo</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Li, Yunrui</creatorcontrib><creatorcontrib>Zhuang, Zechao</creatorcontrib><creatorcontrib>Fan, Yameng</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Dong, Yuming</creatorcontrib><creatorcontrib>Zhu, Yongfa</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><title>Steering the Site Distance of Atomic Cu−Cu Pairs by First‐Shell Halogen Coordination Boosts CO2‐to‐C2 Selectivity</title><title>Angewandte Chemie</title><description>Electrocatalytic reduction of CO2 into C2 products of high economic value provides a promising strategy to realize resourceful CO2 utilization. Rational design and construct dual sites to realize the CO protonation and C−C coupling to unravel their structure‐performance correlation is of great significance in catalysing electrochemical CO2 reduction reactions. Herein, Cu−Cu dual sites with different site distance coordinated by halogen at the first‐shell are constructed and shows a higher intramolecular electron redispersion and coordination symmetry configurations. The long‐range Cu−Cu (Cu−I−Cu) dual sites show an enhanced Faraday efficiency of C2 products, up to 74.1 %, and excellent stability. In addition, the linear relationships that the long‐range Cu−Cu dual sites are accelerated to C2H4 generation and short‐range Cu−Cu (Cu−Cl−Cu) dual sites are beneficial for C2H5OH formation are disclosed. In situ electrochemical attenuated total reflection surface enhanced infrared absorption spectroscopy, in situ Raman and theoretical calculations manifest that long‐range Cu−Cu dual sites can weaken reaction energy barriers of CO hydrogenation and C−C coupling, as well as accelerating deoxygenation of *CH2CHO. This study uncovers the exploitation of site‐distance‐dependent electrochemical properties to steer the CO2 reduction pathway, as well as a potential generic tactic to target C2 synthesis by constructing the desired Cu−Cu dual sites.
The atomic Cu−Cu pairs with a controllable site distance by first‐shell halogen coordination was reported in this work, which shows an enhanced CO2RR performance of C2 products. In addition, a linear scaling relationship that that long‐range Cu−Cu (Cu−I−Cu) dual sites is accelerated to C2H4 generation, while short‐range Cu−Cu (Cu−Cl−Cu) dual sites is beneficial for C2H5OH formation was revealed to give a wide comprehension towards site‐distance‐dependent catalytic performance.</description><subject>Absorption spectroscopy</subject><subject>C2 products</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Chemical reactions</subject><subject>Chemical reduction</subject><subject>CO2 reduction reaction</subject><subject>Coordination</subject><subject>Coupling</subject><subject>Cu−Cu dual site</subject><subject>C−C coupling</subject><subject>Deoxygenation</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Infrared absorption</subject><subject>Infrared reflection</subject><subject>Infrared spectroscopy</subject><subject>Protonation</subject><subject>site distance regulation</subject><subject>Steering</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AYhBdRsFavnhc8p-5nNjnW2A-hWCG9L7ubbbslzdZkq-Tm0aP4E_tLTKn08g4vPMwwA8A9RgOMEHlU1coOCCIME5HwC9DDnOCICi4uQQ8hxqKEsPQa3DTNBiEUE5H2QJsHa2tXrWBYW5i7YOGza4KqjIV-CYfBb52B2f7w_Zvt4ZtydQN1C8edhsPXT762ZQmnqvQrW8HM-7pwlQrOV_DJ-yY0MJuTjgu-OxmBuS2tCe7DhfYWXC1V2di7f-2DxXi0yKbRbD55yYazaNe1iATRXBdMY6G5QJjbRCcaaWEYiwUSKjaG8JgRbQTviie0YEuj0gQXBlFMLe2Dh5Ptrvbve9sEufH7uuoSJcWEdiZIpB2VnqhPV9pW7mq3VXUrMZLHaeVxWnmeVg5fJ6PzR_8AR1dyxw</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Ma, Fengya</creator><creator>Zhang, Pengfang</creator><creator>Zheng, Xiaobo</creator><creator>Chen, Liang</creator><creator>Li, Yunrui</creator><creator>Zhuang, Zechao</creator><creator>Fan, Yameng</creator><creator>Jiang, Peng</creator><creator>Zhao, Hui</creator><creator>Zhang, Jiawei</creator><creator>Dong, Yuming</creator><creator>Zhu, Yongfa</creator><creator>Wang, Dingsheng</creator><creator>Wang, Yao</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0074-7633</orcidid><orcidid>https://orcid.org/0000-0001-9578-9128</orcidid></search><sort><creationdate>20241111</creationdate><title>Steering the Site Distance of Atomic Cu−Cu Pairs by First‐Shell Halogen Coordination Boosts CO2‐to‐C2 Selectivity</title><author>Ma, Fengya ; Zhang, Pengfang ; Zheng, Xiaobo ; Chen, Liang ; Li, Yunrui ; Zhuang, Zechao ; Fan, Yameng ; Jiang, Peng ; Zhao, Hui ; Zhang, Jiawei ; Dong, Yuming ; Zhu, Yongfa ; Wang, Dingsheng ; Wang, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p785-72b5bd4b17b57015e8b8b0b7c446707a6cc25642bc7541283d4fca981dc0313e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectroscopy</topic><topic>C2 products</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Chemical reactions</topic><topic>Chemical reduction</topic><topic>CO2 reduction reaction</topic><topic>Coordination</topic><topic>Coupling</topic><topic>Cu−Cu dual site</topic><topic>C−C coupling</topic><topic>Deoxygenation</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Infrared absorption</topic><topic>Infrared reflection</topic><topic>Infrared spectroscopy</topic><topic>Protonation</topic><topic>site distance regulation</topic><topic>Steering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Fengya</creatorcontrib><creatorcontrib>Zhang, Pengfang</creatorcontrib><creatorcontrib>Zheng, Xiaobo</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Li, Yunrui</creatorcontrib><creatorcontrib>Zhuang, Zechao</creatorcontrib><creatorcontrib>Fan, Yameng</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Dong, Yuming</creatorcontrib><creatorcontrib>Zhu, Yongfa</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Fengya</au><au>Zhang, Pengfang</au><au>Zheng, Xiaobo</au><au>Chen, Liang</au><au>Li, Yunrui</au><au>Zhuang, Zechao</au><au>Fan, Yameng</au><au>Jiang, Peng</au><au>Zhao, Hui</au><au>Zhang, Jiawei</au><au>Dong, Yuming</au><au>Zhu, Yongfa</au><au>Wang, Dingsheng</au><au>Wang, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steering the Site Distance of Atomic Cu−Cu Pairs by First‐Shell Halogen Coordination Boosts CO2‐to‐C2 Selectivity</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-11-11</date><risdate>2024</risdate><volume>136</volume><issue>46</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Electrocatalytic reduction of CO2 into C2 products of high economic value provides a promising strategy to realize resourceful CO2 utilization. Rational design and construct dual sites to realize the CO protonation and C−C coupling to unravel their structure‐performance correlation is of great significance in catalysing electrochemical CO2 reduction reactions. Herein, Cu−Cu dual sites with different site distance coordinated by halogen at the first‐shell are constructed and shows a higher intramolecular electron redispersion and coordination symmetry configurations. The long‐range Cu−Cu (Cu−I−Cu) dual sites show an enhanced Faraday efficiency of C2 products, up to 74.1 %, and excellent stability. In addition, the linear relationships that the long‐range Cu−Cu dual sites are accelerated to C2H4 generation and short‐range Cu−Cu (Cu−Cl−Cu) dual sites are beneficial for C2H5OH formation are disclosed. In situ electrochemical attenuated total reflection surface enhanced infrared absorption spectroscopy, in situ Raman and theoretical calculations manifest that long‐range Cu−Cu dual sites can weaken reaction energy barriers of CO hydrogenation and C−C coupling, as well as accelerating deoxygenation of *CH2CHO. This study uncovers the exploitation of site‐distance‐dependent electrochemical properties to steer the CO2 reduction pathway, as well as a potential generic tactic to target C2 synthesis by constructing the desired Cu−Cu dual sites.
The atomic Cu−Cu pairs with a controllable site distance by first‐shell halogen coordination was reported in this work, which shows an enhanced CO2RR performance of C2 products. In addition, a linear scaling relationship that that long‐range Cu−Cu (Cu−I−Cu) dual sites is accelerated to C2H4 generation, while short‐range Cu−Cu (Cu−Cl−Cu) dual sites is beneficial for C2H5OH formation was revealed to give a wide comprehension towards site‐distance‐dependent catalytic performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202412785</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0074-7633</orcidid><orcidid>https://orcid.org/0000-0001-9578-9128</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2024-11, Vol.136 (46), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_3123670079 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Absorption spectroscopy C2 products Carbon dioxide Carbon monoxide Chemical reactions Chemical reduction CO2 reduction reaction Coordination Coupling Cu−Cu dual site C−C coupling Deoxygenation Electrochemical analysis Electrochemistry Infrared absorption Infrared reflection Infrared spectroscopy Protonation site distance regulation Steering |
title | Steering the Site Distance of Atomic Cu−Cu Pairs by First‐Shell Halogen Coordination Boosts CO2‐to‐C2 Selectivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steering%20the%20Site%20Distance%20of%20Atomic%20Cu%E2%88%92Cu%20Pairs%20by%20First%E2%80%90Shell%20Halogen%20Coordination%20Boosts%20CO2%E2%80%90to%E2%80%90C2%20Selectivity&rft.jtitle=Angewandte%20Chemie&rft.au=Ma,%20Fengya&rft.date=2024-11-11&rft.volume=136&rft.issue=46&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202412785&rft_dat=%3Cproquest_wiley%3E3123670079%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123670079&rft_id=info:pmid/&rfr_iscdi=true |