Steering the Site Distance of Atomic Cu−Cu Pairs by First‐Shell Halogen Coordination Boosts CO2‐to‐C2 Selectivity

Electrocatalytic reduction of CO2 into C2 products of high economic value provides a promising strategy to realize resourceful CO2 utilization. Rational design and construct dual sites to realize the CO protonation and C−C coupling to unravel their structure‐performance correlation is of great signi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-11, Vol.136 (46), p.n/a
Hauptverfasser: Ma, Fengya, Zhang, Pengfang, Zheng, Xiaobo, Chen, Liang, Li, Yunrui, Zhuang, Zechao, Fan, Yameng, Jiang, Peng, Zhao, Hui, Zhang, Jiawei, Dong, Yuming, Zhu, Yongfa, Wang, Dingsheng, Wang, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 46
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Ma, Fengya
Zhang, Pengfang
Zheng, Xiaobo
Chen, Liang
Li, Yunrui
Zhuang, Zechao
Fan, Yameng
Jiang, Peng
Zhao, Hui
Zhang, Jiawei
Dong, Yuming
Zhu, Yongfa
Wang, Dingsheng
Wang, Yao
description Electrocatalytic reduction of CO2 into C2 products of high economic value provides a promising strategy to realize resourceful CO2 utilization. Rational design and construct dual sites to realize the CO protonation and C−C coupling to unravel their structure‐performance correlation is of great significance in catalysing electrochemical CO2 reduction reactions. Herein, Cu−Cu dual sites with different site distance coordinated by halogen at the first‐shell are constructed and shows a higher intramolecular electron redispersion and coordination symmetry configurations. The long‐range Cu−Cu (Cu−I−Cu) dual sites show an enhanced Faraday efficiency of C2 products, up to 74.1 %, and excellent stability. In addition, the linear relationships that the long‐range Cu−Cu dual sites are accelerated to C2H4 generation and short‐range Cu−Cu (Cu−Cl−Cu) dual sites are beneficial for C2H5OH formation are disclosed. In situ electrochemical attenuated total reflection surface enhanced infrared absorption spectroscopy, in situ Raman and theoretical calculations manifest that long‐range Cu−Cu dual sites can weaken reaction energy barriers of CO hydrogenation and C−C coupling, as well as accelerating deoxygenation of *CH2CHO. This study uncovers the exploitation of site‐distance‐dependent electrochemical properties to steer the CO2 reduction pathway, as well as a potential generic tactic to target C2 synthesis by constructing the desired Cu−Cu dual sites. The atomic Cu−Cu pairs with a controllable site distance by first‐shell halogen coordination was reported in this work, which shows an enhanced CO2RR performance of C2 products. In addition, a linear scaling relationship that that long‐range Cu−Cu (Cu−I−Cu) dual sites is accelerated to C2H4 generation, while short‐range Cu−Cu (Cu−Cl−Cu) dual sites is beneficial for C2H5OH formation was revealed to give a wide comprehension towards site‐distance‐dependent catalytic performance.
doi_str_mv 10.1002/ange.202412785
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3123670079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123670079</sourcerecordid><originalsourceid>FETCH-LOGICAL-p785-72b5bd4b17b57015e8b8b0b7c446707a6cc25642bc7541283d4fca981dc0313e3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AYhBdRsFavnhc8p-5nNjnW2A-hWCG9L7ubbbslzdZkq-Tm0aP4E_tLTKn08g4vPMwwA8A9RgOMEHlU1coOCCIME5HwC9DDnOCICi4uQQ8hxqKEsPQa3DTNBiEUE5H2QJsHa2tXrWBYW5i7YOGza4KqjIV-CYfBb52B2f7w_Zvt4ZtydQN1C8edhsPXT762ZQmnqvQrW8HM-7pwlQrOV_DJ-yY0MJuTjgu-OxmBuS2tCe7DhfYWXC1V2di7f-2DxXi0yKbRbD55yYazaNe1iATRXBdMY6G5QJjbRCcaaWEYiwUSKjaG8JgRbQTviie0YEuj0gQXBlFMLe2Dh5Ptrvbve9sEufH7uuoSJcWEdiZIpB2VnqhPV9pW7mq3VXUrMZLHaeVxWnmeVg5fJ6PzR_8AR1dyxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123670079</pqid></control><display><type>article</type><title>Steering the Site Distance of Atomic Cu−Cu Pairs by First‐Shell Halogen Coordination Boosts CO2‐to‐C2 Selectivity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ma, Fengya ; Zhang, Pengfang ; Zheng, Xiaobo ; Chen, Liang ; Li, Yunrui ; Zhuang, Zechao ; Fan, Yameng ; Jiang, Peng ; Zhao, Hui ; Zhang, Jiawei ; Dong, Yuming ; Zhu, Yongfa ; Wang, Dingsheng ; Wang, Yao</creator><creatorcontrib>Ma, Fengya ; Zhang, Pengfang ; Zheng, Xiaobo ; Chen, Liang ; Li, Yunrui ; Zhuang, Zechao ; Fan, Yameng ; Jiang, Peng ; Zhao, Hui ; Zhang, Jiawei ; Dong, Yuming ; Zhu, Yongfa ; Wang, Dingsheng ; Wang, Yao</creatorcontrib><description>Electrocatalytic reduction of CO2 into C2 products of high economic value provides a promising strategy to realize resourceful CO2 utilization. Rational design and construct dual sites to realize the CO protonation and C−C coupling to unravel their structure‐performance correlation is of great significance in catalysing electrochemical CO2 reduction reactions. Herein, Cu−Cu dual sites with different site distance coordinated by halogen at the first‐shell are constructed and shows a higher intramolecular electron redispersion and coordination symmetry configurations. The long‐range Cu−Cu (Cu−I−Cu) dual sites show an enhanced Faraday efficiency of C2 products, up to 74.1 %, and excellent stability. In addition, the linear relationships that the long‐range Cu−Cu dual sites are accelerated to C2H4 generation and short‐range Cu−Cu (Cu−Cl−Cu) dual sites are beneficial for C2H5OH formation are disclosed. In situ electrochemical attenuated total reflection surface enhanced infrared absorption spectroscopy, in situ Raman and theoretical calculations manifest that long‐range Cu−Cu dual sites can weaken reaction energy barriers of CO hydrogenation and C−C coupling, as well as accelerating deoxygenation of *CH2CHO. This study uncovers the exploitation of site‐distance‐dependent electrochemical properties to steer the CO2 reduction pathway, as well as a potential generic tactic to target C2 synthesis by constructing the desired Cu−Cu dual sites. The atomic Cu−Cu pairs with a controllable site distance by first‐shell halogen coordination was reported in this work, which shows an enhanced CO2RR performance of C2 products. In addition, a linear scaling relationship that that long‐range Cu−Cu (Cu−I−Cu) dual sites is accelerated to C2H4 generation, while short‐range Cu−Cu (Cu−Cl−Cu) dual sites is beneficial for C2H5OH formation was revealed to give a wide comprehension towards site‐distance‐dependent catalytic performance.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202412785</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; C2 products ; Carbon dioxide ; Carbon monoxide ; Chemical reactions ; Chemical reduction ; CO2 reduction reaction ; Coordination ; Coupling ; Cu−Cu dual site ; C−C coupling ; Deoxygenation ; Electrochemical analysis ; Electrochemistry ; Infrared absorption ; Infrared reflection ; Infrared spectroscopy ; Protonation ; site distance regulation ; Steering</subject><ispartof>Angewandte Chemie, 2024-11, Vol.136 (46), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0074-7633 ; 0000-0001-9578-9128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202412785$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202412785$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ma, Fengya</creatorcontrib><creatorcontrib>Zhang, Pengfang</creatorcontrib><creatorcontrib>Zheng, Xiaobo</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Li, Yunrui</creatorcontrib><creatorcontrib>Zhuang, Zechao</creatorcontrib><creatorcontrib>Fan, Yameng</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Dong, Yuming</creatorcontrib><creatorcontrib>Zhu, Yongfa</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><title>Steering the Site Distance of Atomic Cu−Cu Pairs by First‐Shell Halogen Coordination Boosts CO2‐to‐C2 Selectivity</title><title>Angewandte Chemie</title><description>Electrocatalytic reduction of CO2 into C2 products of high economic value provides a promising strategy to realize resourceful CO2 utilization. Rational design and construct dual sites to realize the CO protonation and C−C coupling to unravel their structure‐performance correlation is of great significance in catalysing electrochemical CO2 reduction reactions. Herein, Cu−Cu dual sites with different site distance coordinated by halogen at the first‐shell are constructed and shows a higher intramolecular electron redispersion and coordination symmetry configurations. The long‐range Cu−Cu (Cu−I−Cu) dual sites show an enhanced Faraday efficiency of C2 products, up to 74.1 %, and excellent stability. In addition, the linear relationships that the long‐range Cu−Cu dual sites are accelerated to C2H4 generation and short‐range Cu−Cu (Cu−Cl−Cu) dual sites are beneficial for C2H5OH formation are disclosed. In situ electrochemical attenuated total reflection surface enhanced infrared absorption spectroscopy, in situ Raman and theoretical calculations manifest that long‐range Cu−Cu dual sites can weaken reaction energy barriers of CO hydrogenation and C−C coupling, as well as accelerating deoxygenation of *CH2CHO. This study uncovers the exploitation of site‐distance‐dependent electrochemical properties to steer the CO2 reduction pathway, as well as a potential generic tactic to target C2 synthesis by constructing the desired Cu−Cu dual sites. The atomic Cu−Cu pairs with a controllable site distance by first‐shell halogen coordination was reported in this work, which shows an enhanced CO2RR performance of C2 products. In addition, a linear scaling relationship that that long‐range Cu−Cu (Cu−I−Cu) dual sites is accelerated to C2H4 generation, while short‐range Cu−Cu (Cu−Cl−Cu) dual sites is beneficial for C2H5OH formation was revealed to give a wide comprehension towards site‐distance‐dependent catalytic performance.</description><subject>Absorption spectroscopy</subject><subject>C2 products</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Chemical reactions</subject><subject>Chemical reduction</subject><subject>CO2 reduction reaction</subject><subject>Coordination</subject><subject>Coupling</subject><subject>Cu−Cu dual site</subject><subject>C−C coupling</subject><subject>Deoxygenation</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Infrared absorption</subject><subject>Infrared reflection</subject><subject>Infrared spectroscopy</subject><subject>Protonation</subject><subject>site distance regulation</subject><subject>Steering</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AYhBdRsFavnhc8p-5nNjnW2A-hWCG9L7ubbbslzdZkq-Tm0aP4E_tLTKn08g4vPMwwA8A9RgOMEHlU1coOCCIME5HwC9DDnOCICi4uQQ8hxqKEsPQa3DTNBiEUE5H2QJsHa2tXrWBYW5i7YOGza4KqjIV-CYfBb52B2f7w_Zvt4ZtydQN1C8edhsPXT762ZQmnqvQrW8HM-7pwlQrOV_DJ-yY0MJuTjgu-OxmBuS2tCe7DhfYWXC1V2di7f-2DxXi0yKbRbD55yYazaNe1iATRXBdMY6G5QJjbRCcaaWEYiwUSKjaG8JgRbQTviie0YEuj0gQXBlFMLe2Dh5Ptrvbve9sEufH7uuoSJcWEdiZIpB2VnqhPV9pW7mq3VXUrMZLHaeVxWnmeVg5fJ6PzR_8AR1dyxw</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Ma, Fengya</creator><creator>Zhang, Pengfang</creator><creator>Zheng, Xiaobo</creator><creator>Chen, Liang</creator><creator>Li, Yunrui</creator><creator>Zhuang, Zechao</creator><creator>Fan, Yameng</creator><creator>Jiang, Peng</creator><creator>Zhao, Hui</creator><creator>Zhang, Jiawei</creator><creator>Dong, Yuming</creator><creator>Zhu, Yongfa</creator><creator>Wang, Dingsheng</creator><creator>Wang, Yao</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0074-7633</orcidid><orcidid>https://orcid.org/0000-0001-9578-9128</orcidid></search><sort><creationdate>20241111</creationdate><title>Steering the Site Distance of Atomic Cu−Cu Pairs by First‐Shell Halogen Coordination Boosts CO2‐to‐C2 Selectivity</title><author>Ma, Fengya ; Zhang, Pengfang ; Zheng, Xiaobo ; Chen, Liang ; Li, Yunrui ; Zhuang, Zechao ; Fan, Yameng ; Jiang, Peng ; Zhao, Hui ; Zhang, Jiawei ; Dong, Yuming ; Zhu, Yongfa ; Wang, Dingsheng ; Wang, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p785-72b5bd4b17b57015e8b8b0b7c446707a6cc25642bc7541283d4fca981dc0313e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectroscopy</topic><topic>C2 products</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Chemical reactions</topic><topic>Chemical reduction</topic><topic>CO2 reduction reaction</topic><topic>Coordination</topic><topic>Coupling</topic><topic>Cu−Cu dual site</topic><topic>C−C coupling</topic><topic>Deoxygenation</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Infrared absorption</topic><topic>Infrared reflection</topic><topic>Infrared spectroscopy</topic><topic>Protonation</topic><topic>site distance regulation</topic><topic>Steering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Fengya</creatorcontrib><creatorcontrib>Zhang, Pengfang</creatorcontrib><creatorcontrib>Zheng, Xiaobo</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Li, Yunrui</creatorcontrib><creatorcontrib>Zhuang, Zechao</creatorcontrib><creatorcontrib>Fan, Yameng</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Dong, Yuming</creatorcontrib><creatorcontrib>Zhu, Yongfa</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Fengya</au><au>Zhang, Pengfang</au><au>Zheng, Xiaobo</au><au>Chen, Liang</au><au>Li, Yunrui</au><au>Zhuang, Zechao</au><au>Fan, Yameng</au><au>Jiang, Peng</au><au>Zhao, Hui</au><au>Zhang, Jiawei</au><au>Dong, Yuming</au><au>Zhu, Yongfa</au><au>Wang, Dingsheng</au><au>Wang, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steering the Site Distance of Atomic Cu−Cu Pairs by First‐Shell Halogen Coordination Boosts CO2‐to‐C2 Selectivity</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-11-11</date><risdate>2024</risdate><volume>136</volume><issue>46</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Electrocatalytic reduction of CO2 into C2 products of high economic value provides a promising strategy to realize resourceful CO2 utilization. Rational design and construct dual sites to realize the CO protonation and C−C coupling to unravel their structure‐performance correlation is of great significance in catalysing electrochemical CO2 reduction reactions. Herein, Cu−Cu dual sites with different site distance coordinated by halogen at the first‐shell are constructed and shows a higher intramolecular electron redispersion and coordination symmetry configurations. The long‐range Cu−Cu (Cu−I−Cu) dual sites show an enhanced Faraday efficiency of C2 products, up to 74.1 %, and excellent stability. In addition, the linear relationships that the long‐range Cu−Cu dual sites are accelerated to C2H4 generation and short‐range Cu−Cu (Cu−Cl−Cu) dual sites are beneficial for C2H5OH formation are disclosed. In situ electrochemical attenuated total reflection surface enhanced infrared absorption spectroscopy, in situ Raman and theoretical calculations manifest that long‐range Cu−Cu dual sites can weaken reaction energy barriers of CO hydrogenation and C−C coupling, as well as accelerating deoxygenation of *CH2CHO. This study uncovers the exploitation of site‐distance‐dependent electrochemical properties to steer the CO2 reduction pathway, as well as a potential generic tactic to target C2 synthesis by constructing the desired Cu−Cu dual sites. The atomic Cu−Cu pairs with a controllable site distance by first‐shell halogen coordination was reported in this work, which shows an enhanced CO2RR performance of C2 products. In addition, a linear scaling relationship that that long‐range Cu−Cu (Cu−I−Cu) dual sites is accelerated to C2H4 generation, while short‐range Cu−Cu (Cu−Cl−Cu) dual sites is beneficial for C2H5OH formation was revealed to give a wide comprehension towards site‐distance‐dependent catalytic performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202412785</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0074-7633</orcidid><orcidid>https://orcid.org/0000-0001-9578-9128</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-11, Vol.136 (46), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_3123670079
source Wiley Online Library Journals Frontfile Complete
subjects Absorption spectroscopy
C2 products
Carbon dioxide
Carbon monoxide
Chemical reactions
Chemical reduction
CO2 reduction reaction
Coordination
Coupling
Cu−Cu dual site
C−C coupling
Deoxygenation
Electrochemical analysis
Electrochemistry
Infrared absorption
Infrared reflection
Infrared spectroscopy
Protonation
site distance regulation
Steering
title Steering the Site Distance of Atomic Cu−Cu Pairs by First‐Shell Halogen Coordination Boosts CO2‐to‐C2 Selectivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steering%20the%20Site%20Distance%20of%20Atomic%20Cu%E2%88%92Cu%20Pairs%20by%20First%E2%80%90Shell%20Halogen%20Coordination%20Boosts%20CO2%E2%80%90to%E2%80%90C2%20Selectivity&rft.jtitle=Angewandte%20Chemie&rft.au=Ma,%20Fengya&rft.date=2024-11-11&rft.volume=136&rft.issue=46&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202412785&rft_dat=%3Cproquest_wiley%3E3123670079%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123670079&rft_id=info:pmid/&rfr_iscdi=true