Optimizing mechanical properties and pioneering biodegradable polymer blends for superior energy-absorbing structures used in sport helmets

Replacing elements made of conventional plastics (like polystyrene) with biodegradable substitutes is part of the trend of sustainable development and waste reduction. The manuscript covers issues related to the design, manufacturing and testing of sports helmet protective inserts made of biodegrada...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of Civil and Mechanical Engineering 2024-11, Vol.25 (1), p.14, Article 14
Hauptverfasser: Skwarski, Mateusz, Kaczyński, Paweł, Dmitruk, Anna, Makuła, Piotr, Ludwiczak, Joanna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 14
container_title Archives of Civil and Mechanical Engineering
container_volume 25
creator Skwarski, Mateusz
Kaczyński, Paweł
Dmitruk, Anna
Makuła, Piotr
Ludwiczak, Joanna
description Replacing elements made of conventional plastics (like polystyrene) with biodegradable substitutes is part of the trend of sustainable development and waste reduction. The manuscript covers issues related to the design, manufacturing and testing of sports helmet protective inserts made of biodegradable material. The FEM numerical simulations carried out by the authors allowed to determine the optimal desirable mechanical properties ( R e  = 8.5–65 MPa, E  = 500–8000 MPa for 30 × 30 mm inserts; R e  = 10.5–60 MPa, E  = 500–7500 MPa for 48 × 48 mm inserts; R e  = 13–95 MPa, E  = 400–8500 MPa for 55 × 55 mm inserts) and geometric parameters (wall thickness equal to 0.2–0.5 mm, height of 20 mm), ensuring the formation of a plastic fold, which is the most effective energy-absorbing mechanism. The conducted quasi-static compression, bending and dynamic tensile strength tests allowed to determine blends with appropriate proportions of durable PLA with more plastic PBAT, PBS and TPS that meet the established criteria: PLA50PBAT50, PLA30PBAT70 and PLA30TPS70.
doi_str_mv 10.1007/s43452-024-01075-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3123444844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123444844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-a7dd7fa74bb833dc29fc6591e7069dabcb3bf32421b69d9b800382345f5710f93</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhCMEElXpC3CyxDngvzTJEVX8SZV6gbNlO5vWVRKHdXIor8BL4xAkOHHyWJqZ3f2S5JrRW0ZpfhekkBlPKZcpZTTP0uwsWXBaiFQIVpz_0ZfJKoQjpZONs3W2SD53_eBa9-G6PWnBHnTnrG5Ij74HHBwEoruK9M53ADiZjPMV7FFX2jRAet-cWkASdVcFUnskYYxJFwV0gPtTqk3waKZoGHC0w4ixdAxQEdeR0HscyAGaFoZwlVzUugmw-nmXydvjw-vmOd3unl4299vUcimHVOdVldc6l8YUQlSWl7VdZyWDnK7LuJY1wtSCS85M_JemoFQUPCKqs5zRuhTL5GbujVe-jxAGdfQjdnGkEiwapSykjC4-uyz6EBBq1aNrNZ4Uo2rirmbuKnJX39xVFkNiDoV-ogX4W_1P6gtc14ln</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123444844</pqid></control><display><type>article</type><title>Optimizing mechanical properties and pioneering biodegradable polymer blends for superior energy-absorbing structures used in sport helmets</title><source>SpringerNature Journals</source><creator>Skwarski, Mateusz ; Kaczyński, Paweł ; Dmitruk, Anna ; Makuła, Piotr ; Ludwiczak, Joanna</creator><creatorcontrib>Skwarski, Mateusz ; Kaczyński, Paweł ; Dmitruk, Anna ; Makuła, Piotr ; Ludwiczak, Joanna</creatorcontrib><description>Replacing elements made of conventional plastics (like polystyrene) with biodegradable substitutes is part of the trend of sustainable development and waste reduction. The manuscript covers issues related to the design, manufacturing and testing of sports helmet protective inserts made of biodegradable material. The FEM numerical simulations carried out by the authors allowed to determine the optimal desirable mechanical properties ( R e  = 8.5–65 MPa, E  = 500–8000 MPa for 30 × 30 mm inserts; R e  = 10.5–60 MPa, E  = 500–7500 MPa for 48 × 48 mm inserts; R e  = 13–95 MPa, E  = 400–8500 MPa for 55 × 55 mm inserts) and geometric parameters (wall thickness equal to 0.2–0.5 mm, height of 20 mm), ensuring the formation of a plastic fold, which is the most effective energy-absorbing mechanism. The conducted quasi-static compression, bending and dynamic tensile strength tests allowed to determine blends with appropriate proportions of durable PLA with more plastic PBAT, PBS and TPS that meet the established criteria: PLA50PBAT50, PLA30PBAT70 and PLA30TPS70.</description><identifier>ISSN: 2083-3318</identifier><identifier>ISSN: 1644-9665</identifier><identifier>EISSN: 2083-3318</identifier><identifier>DOI: 10.1007/s43452-024-01075-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Bend strength ; Bioplastics ; Biopolymers ; Civil Engineering ; Compression tests ; Compressive strength ; Deformation ; Energy ; Energy absorption ; Engineering ; Helmets ; Inserts ; Materials substitution ; Mechanical Engineering ; Mechanical properties ; Optimization ; Original Article ; Plastics ; Polymer blends ; Polystyrene resins ; Simulation ; Structural Materials ; Sustainable development ; Tensile strength ; Wall thickness ; Yield stress</subject><ispartof>Archives of Civil and Mechanical Engineering, 2024-11, Vol.25 (1), p.14, Article 14</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-a7dd7fa74bb833dc29fc6591e7069dabcb3bf32421b69d9b800382345f5710f93</cites><orcidid>0000-0003-2775-6134 ; 0000-0001-7200-4121 ; 0000-0002-8450-2088 ; 0000-0002-7370-8945 ; 0000-0002-6453-6918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s43452-024-01075-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s43452-024-01075-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Skwarski, Mateusz</creatorcontrib><creatorcontrib>Kaczyński, Paweł</creatorcontrib><creatorcontrib>Dmitruk, Anna</creatorcontrib><creatorcontrib>Makuła, Piotr</creatorcontrib><creatorcontrib>Ludwiczak, Joanna</creatorcontrib><title>Optimizing mechanical properties and pioneering biodegradable polymer blends for superior energy-absorbing structures used in sport helmets</title><title>Archives of Civil and Mechanical Engineering</title><addtitle>Arch. Civ. Mech. Eng</addtitle><description>Replacing elements made of conventional plastics (like polystyrene) with biodegradable substitutes is part of the trend of sustainable development and waste reduction. The manuscript covers issues related to the design, manufacturing and testing of sports helmet protective inserts made of biodegradable material. The FEM numerical simulations carried out by the authors allowed to determine the optimal desirable mechanical properties ( R e  = 8.5–65 MPa, E  = 500–8000 MPa for 30 × 30 mm inserts; R e  = 10.5–60 MPa, E  = 500–7500 MPa for 48 × 48 mm inserts; R e  = 13–95 MPa, E  = 400–8500 MPa for 55 × 55 mm inserts) and geometric parameters (wall thickness equal to 0.2–0.5 mm, height of 20 mm), ensuring the formation of a plastic fold, which is the most effective energy-absorbing mechanism. The conducted quasi-static compression, bending and dynamic tensile strength tests allowed to determine blends with appropriate proportions of durable PLA with more plastic PBAT, PBS and TPS that meet the established criteria: PLA50PBAT50, PLA30PBAT70 and PLA30TPS70.</description><subject>Bend strength</subject><subject>Bioplastics</subject><subject>Biopolymers</subject><subject>Civil Engineering</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>Deformation</subject><subject>Energy</subject><subject>Energy absorption</subject><subject>Engineering</subject><subject>Helmets</subject><subject>Inserts</subject><subject>Materials substitution</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Plastics</subject><subject>Polymer blends</subject><subject>Polystyrene resins</subject><subject>Simulation</subject><subject>Structural Materials</subject><subject>Sustainable development</subject><subject>Tensile strength</subject><subject>Wall thickness</subject><subject>Yield stress</subject><issn>2083-3318</issn><issn>1644-9665</issn><issn>2083-3318</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1OwzAQhCMEElXpC3CyxDngvzTJEVX8SZV6gbNlO5vWVRKHdXIor8BL4xAkOHHyWJqZ3f2S5JrRW0ZpfhekkBlPKZcpZTTP0uwsWXBaiFQIVpz_0ZfJKoQjpZONs3W2SD53_eBa9-G6PWnBHnTnrG5Ij74HHBwEoruK9M53ADiZjPMV7FFX2jRAet-cWkASdVcFUnskYYxJFwV0gPtTqk3waKZoGHC0w4ixdAxQEdeR0HscyAGaFoZwlVzUugmw-nmXydvjw-vmOd3unl4299vUcimHVOdVldc6l8YUQlSWl7VdZyWDnK7LuJY1wtSCS85M_JemoFQUPCKqs5zRuhTL5GbujVe-jxAGdfQjdnGkEiwapSykjC4-uyz6EBBq1aNrNZ4Uo2rirmbuKnJX39xVFkNiDoV-ogX4W_1P6gtc14ln</recordid><startdate>20241102</startdate><enddate>20241102</enddate><creator>Skwarski, Mateusz</creator><creator>Kaczyński, Paweł</creator><creator>Dmitruk, Anna</creator><creator>Makuła, Piotr</creator><creator>Ludwiczak, Joanna</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2775-6134</orcidid><orcidid>https://orcid.org/0000-0001-7200-4121</orcidid><orcidid>https://orcid.org/0000-0002-8450-2088</orcidid><orcidid>https://orcid.org/0000-0002-7370-8945</orcidid><orcidid>https://orcid.org/0000-0002-6453-6918</orcidid></search><sort><creationdate>20241102</creationdate><title>Optimizing mechanical properties and pioneering biodegradable polymer blends for superior energy-absorbing structures used in sport helmets</title><author>Skwarski, Mateusz ; Kaczyński, Paweł ; Dmitruk, Anna ; Makuła, Piotr ; Ludwiczak, Joanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-a7dd7fa74bb833dc29fc6591e7069dabcb3bf32421b69d9b800382345f5710f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bend strength</topic><topic>Bioplastics</topic><topic>Biopolymers</topic><topic>Civil Engineering</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>Deformation</topic><topic>Energy</topic><topic>Energy absorption</topic><topic>Engineering</topic><topic>Helmets</topic><topic>Inserts</topic><topic>Materials substitution</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Plastics</topic><topic>Polymer blends</topic><topic>Polystyrene resins</topic><topic>Simulation</topic><topic>Structural Materials</topic><topic>Sustainable development</topic><topic>Tensile strength</topic><topic>Wall thickness</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skwarski, Mateusz</creatorcontrib><creatorcontrib>Kaczyński, Paweł</creatorcontrib><creatorcontrib>Dmitruk, Anna</creatorcontrib><creatorcontrib>Makuła, Piotr</creatorcontrib><creatorcontrib>Ludwiczak, Joanna</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Archives of Civil and Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skwarski, Mateusz</au><au>Kaczyński, Paweł</au><au>Dmitruk, Anna</au><au>Makuła, Piotr</au><au>Ludwiczak, Joanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing mechanical properties and pioneering biodegradable polymer blends for superior energy-absorbing structures used in sport helmets</atitle><jtitle>Archives of Civil and Mechanical Engineering</jtitle><stitle>Arch. Civ. Mech. Eng</stitle><date>2024-11-02</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>14</spage><pages>14-</pages><artnum>14</artnum><issn>2083-3318</issn><issn>1644-9665</issn><eissn>2083-3318</eissn><abstract>Replacing elements made of conventional plastics (like polystyrene) with biodegradable substitutes is part of the trend of sustainable development and waste reduction. The manuscript covers issues related to the design, manufacturing and testing of sports helmet protective inserts made of biodegradable material. The FEM numerical simulations carried out by the authors allowed to determine the optimal desirable mechanical properties ( R e  = 8.5–65 MPa, E  = 500–8000 MPa for 30 × 30 mm inserts; R e  = 10.5–60 MPa, E  = 500–7500 MPa for 48 × 48 mm inserts; R e  = 13–95 MPa, E  = 400–8500 MPa for 55 × 55 mm inserts) and geometric parameters (wall thickness equal to 0.2–0.5 mm, height of 20 mm), ensuring the formation of a plastic fold, which is the most effective energy-absorbing mechanism. The conducted quasi-static compression, bending and dynamic tensile strength tests allowed to determine blends with appropriate proportions of durable PLA with more plastic PBAT, PBS and TPS that meet the established criteria: PLA50PBAT50, PLA30PBAT70 and PLA30TPS70.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s43452-024-01075-5</doi><orcidid>https://orcid.org/0000-0003-2775-6134</orcidid><orcidid>https://orcid.org/0000-0001-7200-4121</orcidid><orcidid>https://orcid.org/0000-0002-8450-2088</orcidid><orcidid>https://orcid.org/0000-0002-7370-8945</orcidid><orcidid>https://orcid.org/0000-0002-6453-6918</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2083-3318
ispartof Archives of Civil and Mechanical Engineering, 2024-11, Vol.25 (1), p.14, Article 14
issn 2083-3318
1644-9665
2083-3318
language eng
recordid cdi_proquest_journals_3123444844
source SpringerNature Journals
subjects Bend strength
Bioplastics
Biopolymers
Civil Engineering
Compression tests
Compressive strength
Deformation
Energy
Energy absorption
Engineering
Helmets
Inserts
Materials substitution
Mechanical Engineering
Mechanical properties
Optimization
Original Article
Plastics
Polymer blends
Polystyrene resins
Simulation
Structural Materials
Sustainable development
Tensile strength
Wall thickness
Yield stress
title Optimizing mechanical properties and pioneering biodegradable polymer blends for superior energy-absorbing structures used in sport helmets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20mechanical%20properties%20and%20pioneering%20biodegradable%20polymer%20blends%20for%20superior%20energy-absorbing%20structures%20used%20in%20sport%20helmets&rft.jtitle=Archives%20of%20Civil%20and%20Mechanical%20Engineering&rft.au=Skwarski,%20Mateusz&rft.date=2024-11-02&rft.volume=25&rft.issue=1&rft.spage=14&rft.pages=14-&rft.artnum=14&rft.issn=2083-3318&rft.eissn=2083-3318&rft_id=info:doi/10.1007/s43452-024-01075-5&rft_dat=%3Cproquest_cross%3E3123444844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123444844&rft_id=info:pmid/&rfr_iscdi=true