Quantum Harmonic Analysis for Polyanalytic Fock Spaces

We develop the quantum harmonic analysis framework in the reducible setting and apply our findings to polyanalytic Fock spaces. In particular, we explain some phenomena observed in recent work by the second author and answer a few related open questions. For instance, we show that there exists a sym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2024-12, Vol.30 (6), Article 63
Hauptverfasser: Fulsche, Robert, Hagger, Raffael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title The Journal of fourier analysis and applications
container_volume 30
creator Fulsche, Robert
Hagger, Raffael
description We develop the quantum harmonic analysis framework in the reducible setting and apply our findings to polyanalytic Fock spaces. In particular, we explain some phenomena observed in recent work by the second author and answer a few related open questions. For instance, we show that there exists a symbol such that the corresponding Toeplitz operator is unitary on the analytic Fock space but vanishes completely on one of the true polyanalytic Fock spaces. This follows directly from an explicit characterization of the kernel of the Toeplitz quantization, which we derive using quantum harmonic analysis. Moreover, we show that the Berezin transform is injective on the set of of Toeplitz operators. Finally, we provide several characterizations of the C 1 -algebra in terms of integral kernel estimates and essential commutants.
doi_str_mv 10.1007/s00041-024-10124-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3123360162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123360162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-472ab068ecf818173643b89642c1024d18b8f396e6c6630db11121584efd34b73</originalsourceid><addsrcrecordid>eNp9UMFOwzAMjRBIjMEPcKrEuWDHaZoep4kxpEmAgHOUpina2JqRtIf9PRlF4sbFtuz3np8eY9cItwhQ3kUAEJgDFzkCplqdsAkWhHmhCjxNM8gqzbI6ZxcxbgA4UkkTJl8G0_XDLluasPPd2mazzmwPcR2z1ofs2W8P5rjo02Xh7Wf2ujfWxUt21pptdFe_fcreF_dv82W-enp4nM9WueVC9LkoualBKmdbhQpLkoJqVUnBLSavDapatVRJJ62UBE2NiBwLJVzbkKhLmrKbUXcf_NfgYq83fgjJUNSEnEgCSp5QfETZ4GMMrtX7sN6ZcNAI-piPHvPR6af-yUdXiUQjKSZw9-HCn_Q_rG_FW2W6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123360162</pqid></control><display><type>article</type><title>Quantum Harmonic Analysis for Polyanalytic Fock Spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fulsche, Robert ; Hagger, Raffael</creator><creatorcontrib>Fulsche, Robert ; Hagger, Raffael</creatorcontrib><description>We develop the quantum harmonic analysis framework in the reducible setting and apply our findings to polyanalytic Fock spaces. In particular, we explain some phenomena observed in recent work by the second author and answer a few related open questions. For instance, we show that there exists a symbol such that the corresponding Toeplitz operator is unitary on the analytic Fock space but vanishes completely on one of the true polyanalytic Fock spaces. This follows directly from an explicit characterization of the kernel of the Toeplitz quantization, which we derive using quantum harmonic analysis. Moreover, we show that the Berezin transform is injective on the set of of Toeplitz operators. Finally, we provide several characterizations of the C 1 -algebra in terms of integral kernel estimates and essential commutants.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-024-10124-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Fourier Analysis ; Harmonic analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2024-12, Vol.30 (6), Article 63</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-472ab068ecf818173643b89642c1024d18b8f396e6c6630db11121584efd34b73</cites><orcidid>0000-0002-4289-3025 ; 0000-0003-3218-9410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-024-10124-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-024-10124-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Fulsche, Robert</creatorcontrib><creatorcontrib>Hagger, Raffael</creatorcontrib><title>Quantum Harmonic Analysis for Polyanalytic Fock Spaces</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>We develop the quantum harmonic analysis framework in the reducible setting and apply our findings to polyanalytic Fock spaces. In particular, we explain some phenomena observed in recent work by the second author and answer a few related open questions. For instance, we show that there exists a symbol such that the corresponding Toeplitz operator is unitary on the analytic Fock space but vanishes completely on one of the true polyanalytic Fock spaces. This follows directly from an explicit characterization of the kernel of the Toeplitz quantization, which we derive using quantum harmonic analysis. Moreover, we show that the Berezin transform is injective on the set of of Toeplitz operators. Finally, we provide several characterizations of the C 1 -algebra in terms of integral kernel estimates and essential commutants.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Fourier Analysis</subject><subject>Harmonic analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMFOwzAMjRBIjMEPcKrEuWDHaZoep4kxpEmAgHOUpina2JqRtIf9PRlF4sbFtuz3np8eY9cItwhQ3kUAEJgDFzkCplqdsAkWhHmhCjxNM8gqzbI6ZxcxbgA4UkkTJl8G0_XDLluasPPd2mazzmwPcR2z1ofs2W8P5rjo02Xh7Wf2ujfWxUt21pptdFe_fcreF_dv82W-enp4nM9WueVC9LkoualBKmdbhQpLkoJqVUnBLSavDapatVRJJ62UBE2NiBwLJVzbkKhLmrKbUXcf_NfgYq83fgjJUNSEnEgCSp5QfETZ4GMMrtX7sN6ZcNAI-piPHvPR6af-yUdXiUQjKSZw9-HCn_Q_rG_FW2W6</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Fulsche, Robert</creator><creator>Hagger, Raffael</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4289-3025</orcidid><orcidid>https://orcid.org/0000-0003-3218-9410</orcidid></search><sort><creationdate>20241201</creationdate><title>Quantum Harmonic Analysis for Polyanalytic Fock Spaces</title><author>Fulsche, Robert ; Hagger, Raffael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-472ab068ecf818173643b89642c1024d18b8f396e6c6630db11121584efd34b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Fourier Analysis</topic><topic>Harmonic analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fulsche, Robert</creatorcontrib><creatorcontrib>Hagger, Raffael</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fulsche, Robert</au><au>Hagger, Raffael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Harmonic Analysis for Polyanalytic Fock Spaces</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>30</volume><issue>6</issue><artnum>63</artnum><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>We develop the quantum harmonic analysis framework in the reducible setting and apply our findings to polyanalytic Fock spaces. In particular, we explain some phenomena observed in recent work by the second author and answer a few related open questions. For instance, we show that there exists a symbol such that the corresponding Toeplitz operator is unitary on the analytic Fock space but vanishes completely on one of the true polyanalytic Fock spaces. This follows directly from an explicit characterization of the kernel of the Toeplitz quantization, which we derive using quantum harmonic analysis. Moreover, we show that the Berezin transform is injective on the set of of Toeplitz operators. Finally, we provide several characterizations of the C 1 -algebra in terms of integral kernel estimates and essential commutants.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-024-10124-9</doi><orcidid>https://orcid.org/0000-0002-4289-3025</orcidid><orcidid>https://orcid.org/0000-0003-3218-9410</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2024-12, Vol.30 (6), Article 63
issn 1069-5869
1531-5851
language eng
recordid cdi_proquest_journals_3123360162
source SpringerLink Journals - AutoHoldings
subjects Abstract Harmonic Analysis
Approximations and Expansions
Fourier Analysis
Harmonic analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Operators (mathematics)
Partial Differential Equations
Signal,Image and Speech Processing
title Quantum Harmonic Analysis for Polyanalytic Fock Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A32%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Harmonic%20Analysis%20for%20Polyanalytic%20Fock%20Spaces&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Fulsche,%20Robert&rft.date=2024-12-01&rft.volume=30&rft.issue=6&rft.artnum=63&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-024-10124-9&rft_dat=%3Cproquest_cross%3E3123360162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123360162&rft_id=info:pmid/&rfr_iscdi=true